Logo Header
  1. Môn Toán
  2. Giải bài 2.13 trang 24 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 2.13 trang 24 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 2.13 trang 24 Sách bài tập Toán 10 - Kết nối tri thức

Bài 2.13 trang 24 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.13 trang 24, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Điểm nào dưới đây không thuộc miền nghiệm của bất phương trình

Đề bài

Điểm nào dưới đây không thuộc miền nghiệm của bất phương trình \(2x - 3y > 13?\)

A. \(\left( {1; - 5} \right).\)

B. \(\left( {2; - 4} \right).\)

C. \(\left( {3; - 3} \right).\)

D. \(\left( {8;1} \right).\)

Phương pháp giải - Xem chi tiếtGiải bài 2.13 trang 24 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

Thay các điểm ở đáp án vào bất phương trình \(2x - 3y > 13.\)

Lời giải chi tiết

  • Thay \(\left( {1; - 5} \right)\) vào bất phương trình \(2x - 3y > 13\), ta được:

\(2.1 - 3\left( { - 5} \right) = 2 + 15 = 17 > 13\) (thỏa mãn)

\( \Rightarrow \) điểm \(\left( {1; - 5} \right)\) thuộc miền nghiệm của bất phương trình \(2x - 3y > 13.\)

  • Thay \(\left( {2; - 4} \right)\) vào bất phương trình \(2x - 3y > 13\), ta được:

\(2.2 - 3\left( { - 4} \right) = 4 + 12 = 16 > 13\) (thỏa mãn)

\( \Rightarrow \) điểm \(\left( {2; - 4} \right)\) thuộc miền nghiệm của bất phương trình \(2x - 3y > 13.\)

  • Thay \(\left( {3; - 3} \right)\) vào bất phương trình \(2x - 3y > 13\), ta được:

\(2.3 - 3\left( { - 3} \right) = 6 + 9 = 15 > 13\) (thỏa mãn)

\( \Rightarrow \) điểm \(\left( {3; - 3} \right)\) thuộc miền nghiệm của bất phương trình \(2x - 3y > 13.\)

Vì ba điểm \(\left( {1; - 5} \right)\),\(\left( {2; - 4} \right)\),\(\left( {3; - 3} \right)\) đều thuộc miền nghiệm của bất phương trình \(2x - 3y > 13\) nên điểm \(\left( {8;1} \right)\) không thuộc miền nghiệm của bất phương trình \(2x - 3y > 13\).

Chọn D.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2.13 trang 24 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Bài viết liên quan

Giải bài 2.13 trang 24 Sách bài tập Toán 10 - Kết nối tri thức: Tóm tắt lý thuyết và phương pháp giải

Bài 2.13 trang 24 sách bài tập Toán 10 Kết nối tri thức thuộc chương 2: Vectơ. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Tích vô hướng của hai vectơ: Định nghĩa, tính chất và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, giải các bài toán về hình học phẳng.

Nội dung bài tập 2.13 trang 24

Bài 2.13 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ trong hình vẽ.
  2. Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số thực).
  3. Tính tích vô hướng của hai vectơ.
  4. Sử dụng các tính chất của vectơ để chứng minh các đẳng thức.
  5. Giải các bài toán liên quan đến hình học phẳng bằng phương pháp vectơ.

Lời giải chi tiết bài 2.13 trang 24

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 2.13 trang 24, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài toán yêu cầu:

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2

Lời giải:

Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}

Ta có: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM}

overrightarrow{BM} = (1/2)overrightarrow{BC} = (1/2)(overrightarrow{AC} -overrightarrow{AB})

Do đó: overrightarrow{AM} =overrightarrow{AB} + (1/2)(overrightarrow{AC} -overrightarrow{AB}) =overrightarrow{AB} + (1/2)overrightarrow{AC} - (1/2)overrightarrow{AB} = (1/2)overrightarrow{AB} + (1/2)overrightarrow{AC} = (overrightarrow{AB} +overrightarrow{AC})/2

Vậy, ta đã chứng minh được: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:

  • Nắm vững định nghĩa và các tính chất của vectơ.
  • Thực hành nhiều bài tập để làm quen với các dạng bài khác nhau.
  • Sử dụng hình vẽ để minh họa và hiểu rõ hơn về bài toán.
  • Chia nhỏ bài toán lớn thành các bài toán nhỏ hơn để dễ dàng giải quyết.
  • Kiểm tra lại kết quả sau khi giải xong.

Bài tập tương tự và luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 10 Kết nối tri thức và các tài liệu tham khảo khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để được hướng dẫn chi tiết hơn.

Kết luận

Bài 2.13 trang 24 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn đã cung cấp, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 10