Bài 3.23 trang 40 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.23 trang 40, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trên mặt phẳng tọa độ Oxy, lấy điểm M thuộc nửa đường tròn đơn vị,
Đề bài
Trên mặt phẳng tọa độ \(Oxy,\) lấy điểm \(M\) thuộc nửa đường tròn đơn vị, sao cho \(\cos \widehat {xOM} = \frac{{ - 3}}{5}.\) (H.3.4). Diện tích của tam giác \(AOM\) bằng:
A. \(\frac{4}{5}.\)
B. \(\frac{2}{5}.\)
C. \(\frac{3}{5}.\)
D. \(\frac{3}{{10}}.\)
Lời giải chi tiết
Ta có: \(\cos \widehat {xOM} = \frac{{ - 3}}{5} \Rightarrow \sin \widehat {xOM} = \sqrt {1 - {{\left( {\frac{{ - 3}}{5}} \right)}^2}} = \frac{4}{5}\)
Diện tích \(\Delta AOM\) là: \(S = \frac{1}{2}.OM.OA.sin AOM = \frac{1}{2}.1.1.\frac{4}{5} = \frac{2}{{5}}.\)
Chọn B.
Bài 3.23 trang 40 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:
Dưới đây là lời giải chi tiết bài 3.23 trang 40 sách bài tập Toán 10 Kết nối tri thức:
(Nội dung lời giải chi tiết bài 3.23 sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)
Để giúp các em học sinh hiểu rõ hơn về cách giải bài toán, chúng ta sẽ xem xét một ví dụ minh họa:
(Ví dụ minh họa với các số liệu cụ thể và lời giải chi tiết tương tự như trên)
Khi giải bài toán về vectơ, các em học sinh cần lưu ý những điều sau:
Để rèn luyện kỹ năng giải bài toán về vectơ, các em học sinh có thể làm thêm các bài tập tương tự sau:
Bài 3.23 trang 40 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và các lưu ý quan trọng trên, các em học sinh sẽ tự tin giải bài toán này và các bài toán tương tự.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!