Logo Header
  1. Môn Toán
  2. Giải bài 4.19 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.19 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.19 trang 54 Sách bài tập Toán 10 - Kết nối tri thức

Bài 4.19 trang 54 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.19 trang 54, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho tam giác ABC

Đề bài

Cho tam giác \(ABC.\)

a) Tìm điểm \(M\) sao cho \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \)

b) Xác định điểm \(N\) thỏa mãn \(4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)

Lời giải chi tiết

Giải bài 4.19 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

a) Giả sử tìm được điểm \(M\) sao cho \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \)

Gọi \(I\) là trung điểm của \(AB\) và \(J\) là trung điểm của cạnh \(CI\).

Ta có: \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \;\overrightarrow {MI} + \overrightarrow {IA} + \overrightarrow {MI} + \overrightarrow {IB} + 2\overrightarrow {MC} = 2\overrightarrow {MI} + 2\overrightarrow {MC} = 4\overrightarrow {MJ} \)

Mặt khác \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \)

\( \Rightarrow \) \(4\overrightarrow {MJ} = \overrightarrow 0 \,\, \Rightarrow \,\,\overrightarrow {MJ} = \overrightarrow 0 \,\, \Rightarrow \,\,M \equiv J\)

Vậy \(M\) là trung điểm của \(CI\).

b) Giả sử tìm được điểm \(N\) thỏa mãn \(4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)

Gọi \(K\) là trung điểm của \(AC\).

Ta có: \(4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = 2\left( {\overrightarrow {NA} - \overrightarrow {NB} } \right) + \left( {\overrightarrow {NA} + \overrightarrow {NC} } \right) + \overrightarrow {NA} \)

\(\begin{array}{l} = 2\overrightarrow {BA} + \left( {\overrightarrow {NK} + \overrightarrow {KB} + \overrightarrow {NK} + \overrightarrow {KC} } \right) + \overrightarrow {NA} \\ = 2\overrightarrow {BA} + 2\overrightarrow {NK} + \overrightarrow {NA} \end{array}\)

Gọi \(M\) là điểm thỏa mãn \(2\overrightarrow {MK} + \overrightarrow {MA} = 0\)

Khi đó: \(2\overrightarrow {NK} + \overrightarrow {NA} = 2\left( {\overrightarrow {NM} + \overrightarrow {MK} } \right) + \overrightarrow {NM} + \overrightarrow {MA} = 3\overrightarrow {NM} \)

Do đó \(4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = 2\overrightarrow {BA} + 3\overrightarrow {NM} \)

Mặt khác \(4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)

\( \Rightarrow \) \(2\overrightarrow {BA} + 3\overrightarrow {NM} = \overrightarrow 0 \) \( \Leftrightarrow \) \(\overrightarrow {NM} = \frac{2}{3}\overrightarrow {AB} \) (1)

Lấy điểm \(P\) thuộc cạnh \(AB\) sao cho \(\overrightarrow {AP} = \frac{2}{3}\overrightarrow {AB} \) (2)

Từ (1) và (2) \( \Rightarrow \) \(\overrightarrow {NM} = \overrightarrow {AP} \)

\( \Rightarrow \) tứ giác \(APMN\) là hình bình hành

Vậy điểm \(N\) cần tìm là đỉnh thứ tư của hình bình hành \(APMN\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.19 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.19 trang 54 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.19 trang 54 sách bài tập Toán 10 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, giải các bài toán về vị trí tương đối của các điểm và đường thẳng.

Phân tích bài toán:

Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:

  • Các điểm và vectơ đã cho: Xác định các điểm và vectơ được đề cập trong bài toán.
  • Yêu cầu của bài toán: Xác định rõ yêu cầu của bài toán, ví dụ như tính độ dài vectơ, tìm góc giữa hai vectơ, chứng minh một đẳng thức vectơ, v.v.
  • Các mối quan hệ giữa các yếu tố: Tìm hiểu mối quan hệ giữa các điểm, vectơ và các yếu tố khác trong bài toán.

Lời giải chi tiết:

Để giải bài 4.19 trang 54 sách bài tập Toán 10 Kết nối tri thức, chúng ta sẽ thực hiện các bước sau:

  1. Vẽ hình: Vẽ hình minh họa bài toán, giúp chúng ta hình dung rõ hơn về các yếu tố và mối quan hệ giữa chúng.
  2. Chọn hệ tọa độ: Chọn một hệ tọa độ thích hợp để biểu diễn các điểm và vectơ trong bài toán.
  3. Biểu diễn các vectơ bằng tọa độ: Sử dụng tọa độ của các điểm để biểu diễn các vectơ bằng tọa độ.
  4. Thực hiện các phép toán vectơ: Sử dụng các phép toán vectơ để giải quyết bài toán.
  5. Kiểm tra kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa:

Giả sử bài toán yêu cầu chúng ta tính độ dài của vectơ AB, với A(x1, y1) và B(x2, y2). Chúng ta có thể sử dụng công thức sau:

|AB| = √((x2 - x1)² + (y2 - y1)²)

Lưu ý:

  • Khi giải bài toán về vectơ, chúng ta cần chú ý đến dấu của các tọa độ.
  • Sử dụng công thức một cách chính xác và cẩn thận.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự:

Để rèn luyện kỹ năng giải bài toán về vectơ, các em có thể làm thêm các bài tập tương tự trong sách bài tập Toán 10 Kết nối tri thức. Ngoài ra, các em cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán.

Kết luận:

Bài 4.19 trang 54 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bằng cách nắm vững các kiến thức cơ bản và thực hành giải nhiều bài tập, các em sẽ tự tin hơn trong việc giải quyết các bài toán về vectơ.

Giaitoan.edu.vn hy vọng rằng lời giải chi tiết này sẽ giúp các em học sinh hiểu rõ hơn về bài toán và tự tin làm bài tập. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 10