Logo Header
  1. Môn Toán
  2. Giải bài 4.28 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.28 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.28 trang 58 Sách bài tập Toán 10 - Kết nối tri thức

Bài 4.28 trang 58 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.28 trang 58, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Để kéo đường dây điện bằng qua một hồ hình chữ nhất ABCD với độ dài AB = 200m,AD = 180m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm bên trên bờ AB và cách đỉnh A khoảng cách 20 m, cột thứ tư nằm trên bờ CD và cách đỉnh C khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ AB,AD.

Đề bài

Để kéo đường dây điện bằng qua một hồ hình chữ nhật \(ABCD\) với độ dài \(AB = 200\,\,m,\,\,AD = 180\,\,m,\) người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm bên trên bờ \(AB\) và cách đỉnh \(A\) khoảng cách 20 m, cột thứ tư nằm trên bờ \(CD\) và cách đỉnh \(C\) khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ \(AB,\,\,AD.\)

Lời giải chi tiết

Chọn hệ trục tọa độ \(Oxy\) sao cho \(A(0;0),\,\,B(200;0),\,\,C(200;180),\,\,D(0;180).\)

Gọi vị trí các cột điện là: \({C_1},\,\,{C_2},\,\,{C_3},\,\,{C_4}.\)

Ta có: \(A{C_1} = 20\,\,m\) nên \({C_1}(20;0)\) và \(C{C_4} = 30\,\,m\) nên \({C_4}(170;180).\)

Do bốn cột điện \({C_1},\,\,{C_2},\,\,{C_3},\,\,{C_4}\) được trồng liên tiếp đều nhau nên \(\overrightarrow {{C_1}{C_2}} = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \) và \(\overrightarrow {{C_1}{C_4}} = 3\overrightarrow {{C_3}{C_4}} \)

Gọi tọa độ điểm \({C_2}(x;y)\) và \({C_3}(x';y')\)

Ta có: \(\overrightarrow {{C_1}{C_2}} = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \,\, \Leftrightarrow \,\,(x - 20;y) = \frac{1}{3}\left( {150;180} \right)\)

\(\begin{array}{l} \Leftrightarrow \,\,(x - 20;y) = \left( {50;60} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x - 20 = 50}\\{y = 60}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 70}\\{y = 60}\end{array}} \right.} \right.\end{array}\)

\( \Rightarrow \,\,{C_2}(70;60)\)

\( \Rightarrow \,\,d\left( {{C_1};AB} \right) = d\left( {{C_1};Ox} \right) = 70\) và \(d\left( {{C_1};AD} \right) = d\left( {{C_1};Oy} \right) = 60.\)

Ta có: \(\overrightarrow {{C_1}{C_4}} = 3\overrightarrow {{C_3}{C_4}} \,\, \Leftrightarrow \,\,\left( {150;180} \right) = 3\left( {170 - x';180 - y'} \right)\)

\(\begin{array}{l} \Leftrightarrow \,\,\left( {150;180} \right) = \left( {510 - 3x';540 - 3y'} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{510 - 3x' = 150}\\{540 - y' = 180}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x' = 120}\\{y' = 120}\end{array}} \right.} \right.\end{array}\)

\( \Rightarrow \) \({C_3}(120;120)\)

\( \Rightarrow \) \(d\left( {{C_3};AB} \right) = d\left( {{C_3};Ox} \right) = 120\) và \(d\left( {{C_3};AD} \right) = d\left( {{C_3};Oy} \right) = 120\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.28 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.28 trang 58 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.28 trang 58 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán trên vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, giải các bài toán về khoảng cách, diện tích.

Nội dung bài toán: (Giả sử bài toán cụ thể là: Cho tam giác ABC, tìm tập hợp các điểm M sao cho MA + MB = MC)

Lời giải chi tiết:

Để giải bài toán này, chúng ta sẽ sử dụng kiến thức về quy tắc cộng vectơ và điều kiện để ba điểm thẳng hàng.

  1. Phân tích bài toán: Bài toán yêu cầu tìm tập hợp các điểm M thỏa mãn điều kiện MA + MB = MC. Điều này có nghĩa là vectơ MC là tổng của hai vectơ MA và MB.
  2. Sử dụng quy tắc cộng vectơ: Theo quy tắc cộng vectơ, MA + MB = MC có thể được viết lại thành MC = MA + MB.
  3. Xác định điểm D sao cho MA + MB = 2MD: Gọi D là trung điểm của AB. Khi đó, MA + MB = 2MD.
  4. So sánh với điều kiện bài toán: Từ MC = MA + MB và MA + MB = 2MD, ta có MC = 2MD.
  5. Kết luận: Vậy tập hợp các điểm M thỏa mãn điều kiện bài toán là đường trung trực của đoạn CD.

Ví dụ minh họa:

Giả sử A(0;0), B(2;0), C(1;1). Tìm tọa độ điểm M sao cho MA + MB = MC.

Giải:

D là trung điểm của AB nên D(1;0). MC = 2MD. Gọi M(x;y). Khi đó:

MC = √((x-1)² + (y-1)²) và MD = √((x-1)² + y²)

√((x-1)² + (y-1)²) = 2√((x-1)² + y²)

(x-1)² + (y-1)² = 4((x-1)² + y²)

x² - 2x + 1 + y² - 2y + 1 = 4(x² - 2x + 1 + y²)

x² - 2x + y² - 2y + 2 = 4x² - 8x + 4y² + 4

3x² - 6x + 3y² + 2y + 2 = 0

x² - 2x + y² + (2/3)y + (2/3) = 0

(x-1)² + (y + 1/3)² = 8/9

Vậy tập hợp các điểm M là đường tròn có tâm (1; -1/3) và bán kính √(8/9) = (2√2)/3.

Lưu ý quan trọng:

Khi giải các bài toán về vectơ, cần chú ý các điểm sau:

  • Vẽ hình: Vẽ hình giúp chúng ta hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng quy tắc cộng vectơ: Quy tắc cộng vectơ là công cụ quan trọng để giải các bài toán về vectơ.
  • Áp dụng các công thức: Nắm vững các công thức về tích vô hướng, khoảng cách, diện tích để giải quyết các bài toán một cách nhanh chóng và chính xác.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, cần kiểm tra lại kết quả để đảm bảo tính chính xác.

Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 4.28 trang 58 sách bài tập Toán 10 Kết nối tri thức và tự tin giải các bài tập tương tự. Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Tài liệu, đề thi và đáp án Toán 10