Logo Header
  1. Môn Toán
  2. Giải bài 4.30 trang 65 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.30 trang 65 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.30 trang 65 Sách bài tập Toán 10 - Kết nối tri thức

Bài 4.30 trang 65 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.30 trang 65, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

a) Chứng minh rằng các đường thẳng AC và BM vuông góc với nhau.

Đề bài

Cho hình chữ nhật \(ABCD\) có \(AB = 1,\,\,BC = \sqrt 2 .\) Gọi \(M\) là trung điểm của \(AD.\)

a) Chứng minh rằng các đường thẳng \(AC\) và \(BM\) vuông góc với nhau.

b) Gọi \(H\) là giao điểm của \(AC,\,\,BM.\) Gọi \(N\) là trung điểm của \(AH\) và \(P\) là trung điểm của \(CD.\) Chứng minh rằng tam giác \(NBP\) là một tam giác vuông.

Phương pháp giải - Xem chi tiếtGiải bài 4.30 trang 65 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

- Tính các vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BM} \) xong tính tích vô hướng của hai vectơ \(\overrightarrow {AC} .\overrightarrow {BM} \)

- Tính độ dài các cạnh \(AC,\,\,AH\)

- Tính các vectơ \(\overrightarrow {NB} \) và \(\overrightarrow {NP} \) xong tính tích vô hướng của hai vectơ \(\overrightarrow {NB} .\overrightarrow {NP} \)

Lời giải chi tiết

Giải bài 4.30 trang 65 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 2

a) Ta có: \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \) (quy tắc hình bình hành)

Ta có: \(\overrightarrow {BM} = \overrightarrow {AM} - \overrightarrow {AB} = \frac{1}{2}\overrightarrow {AD} - \overrightarrow {AB} \)

\( \Rightarrow \) \(\overrightarrow {AC} .\overrightarrow {BM} = \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\left( {\frac{1}{2}\overrightarrow {AD} - \overrightarrow {AB} } \right)\)

 \(\begin{array}{l} = \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AD} - {\overrightarrow {AB} ^2} + \frac{1}{2}{\overrightarrow {AD} ^2} - \overrightarrow {AB} .\overrightarrow {AD} \\ = - {\overrightarrow {AB} ^2} + \frac{1}{2}{\overrightarrow {AD} ^2} = - 1 + \frac{1}{2}\left( {\sqrt 2 } \right) - 1 + 1 = 0\end{array}\)

\( \Rightarrow \) \(\overrightarrow {AC} \bot \overrightarrow {BM} \) \( \Rightarrow \) \(AC \bot BM\)

b) Xét \(\Delta ABC\) vuông tại \(B\) có:

\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {1 + {{\left( {\sqrt 2 } \right)}^2}} = \sqrt 3 \) (1)

Xét \(\Delta ABN\) vuông tại \(A\) có:

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{M^2}}}\) (hệ thức lượng trong tam giác vuông)

\( \Rightarrow \,\,\frac{1}{{A{H^2}}} = \frac{1}{{{1^2}}} + \frac{1}{{{{\left( {\frac{{\sqrt 2 }}{2}} \right)}^2}}} = 1 + 2 = 3\)

\( \Rightarrow \,\,AH = \frac{{\sqrt 3 }}{3}\) (2)

Từ (1) và (2) \( \Rightarrow \) \(AH = \frac{1}{3}AC\)

Ta có: \(\overrightarrow {NB} = \overrightarrow {AB} - \overrightarrow {AN} = \overrightarrow {AB} - \frac{1}{2}\overrightarrow {AH} = \overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} = \frac{5}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AD} \)

Ta có: \(\overrightarrow {NP} = \overrightarrow {CP} - \overrightarrow {CN} = \frac{1}{2}\overrightarrow {CD} - \frac{5}{6}\overrightarrow {CA} = \frac{5}{6}\overrightarrow {AC} - \frac{1}{2}\overrightarrow {AB} = \frac{5}{6}\overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} \)

\( \Rightarrow \) \(\overrightarrow {NB} .\overrightarrow {NP} = \left( {\frac{5}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AD} } \right)\left( {\frac{5}{6}\overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} } \right)\)

\(\begin{array}{l} = \frac{{25}}{{36}}\overrightarrow {AB} .\overrightarrow {AD} + \frac{5}{{18}}{\overrightarrow {AB} ^2} - \frac{5}{{36}}{\overrightarrow {AD} ^2} - \frac{1}{{18}}\overrightarrow {AB} .\overrightarrow {AD} \\ = \frac{5}{{18}}{\overrightarrow {AB} ^2} - \frac{5}{{36}}{\overrightarrow {AD} ^2} = \frac{5}{{18}}.1 - \frac{5}{{36}}.\left( {\sqrt 2 } \right) = \frac{5}{{18}} - \frac{5}{{18}} = 0\end{array}\)

\( \Rightarrow \) \(\overrightarrow {NB} \bot \overrightarrow {NP} \) \( \Rightarrow \) \(NB \bot NP\)

\( \Rightarrow \) \(\Delta NBP\) vuông tại \(N\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.30 trang 65 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.30 trang 65 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.30 trang 65 sách bài tập Toán 10 Kết nối tri thức thường xoay quanh việc sử dụng các tính chất của vectơ, đặc biệt là các phép toán cộng, trừ vectơ, tích của một số với một vectơ, và các ứng dụng của vectơ trong việc chứng minh các tính chất hình học.

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức cơ bản:

  • Vectơ: Một đoạn thẳng có hướng. Vectơ được xác định bởi điểm gốc và điểm cuối.
  • Phép cộng vectơ: Quy tắc hình bình hành hoặc quy tắc tam giác.
  • Phép trừ vectơ: AB - AC = CB
  • Tích của một số với một vectơ: k.a (k là số thực, a là vectơ).
  • Vectơ chỉ phương của đường thẳng: Vectơ song song hoặc ngược chiều với đường thẳng đó.

Phần 2: Phân tích bài toán 4.30 trang 65

Để giải bài 4.30 trang 65 hiệu quả, cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Thông thường, bài toán sẽ cung cấp một hình vẽ hoặc một mô tả về các điểm, đường thẳng, và yêu cầu chứng minh một mối quan hệ nào đó giữa chúng bằng cách sử dụng vectơ.

Phần 3: Lời giải chi tiết bài 4.30 trang 65

(Ở đây sẽ là lời giải chi tiết của bài toán 4.30, bao gồm các bước giải, giải thích rõ ràng, và sử dụng các ký hiệu toán học chính xác. Ví dụ, nếu bài toán yêu cầu chứng minh hai đường thẳng song song, lời giải sẽ trình bày cách sử dụng vectơ chỉ phương để chứng minh hai vectơ chỉ phương của hai đường thẳng cùng phương.)

Ví dụ (giả định):

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2

  1. Phân tích: Ta cần chứng minh một đẳng thức vectơ.
  2. Chứng minh:

    Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}.

    Suy ra: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} +overrightarrow{MC} =overrightarrow{AB} + (overrightarrow{AC} -overrightarrow{AM}).

    Do đó: 2overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC}.

    Vậy: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).

Phần 4: Các dạng bài tập tương tự và phương pháp giải

Các bài tập tương tự bài 4.30 thường yêu cầu:

  • Chứng minh các tính chất hình học bằng vectơ.
  • Tìm tọa độ của một điểm hoặc vectơ.
  • Tính độ dài của một vectơ.
  • Xác định mối quan hệ giữa các vectơ.

Để giải các bài tập này, cần nắm vững các kiến thức cơ bản về vectơ, áp dụng các quy tắc và tính chất một cách linh hoạt, và kết hợp với các kiến thức hình học đã học.

Phần 5: Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin hơn khi làm bài kiểm tra.

Phần 6: Tổng kết

Bài 4.30 trang 65 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.

Tài liệu, đề thi và đáp án Toán 10