Bài 6.44 trang 24 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về vectơ vào giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh sử dụng các tính chất của vectơ, các phép toán vectơ để chứng minh các đẳng thức vectơ hoặc giải các bài toán liên quan đến hình học phẳng.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.44 trang 24 sách bài tập Toán 10 - Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Điều kiện cần và đủ của tham số m để parabol
Đề bài
Điều kiện cần và đủ của tham số m để parabol \((P):y = {x^2} - 2x + m - 1\) cắt trục Ox tại hai điểm phân biệt nằm về hai phía của trục tung là:
A. m < 1 B. m < 2 C. m > 2 D. m > 1
Phương pháp giải - Xem chi tiết
Parabol \(y = a{x^2} + bx + c\) cắt Ox tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi PT \(a{x^2} + bx + c = 0\) có hai nghiệm trái dấu
Bước 1: Xác định các hệ số a, b, c. Tìm điều kiện để PT \({x^2} - 2x + m - 1 = 0\) có 2 nghiệm trái dấu (ac < 0)
Bước 2: Giải BPT ac < 0 (BPT bậc nhất ẩn m) rồi kết luận.
Lời giải chi tiết
Ta có: Đồ thị (P) cắt trục Ox tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi PT \({x^2} - 2x + m - 1 = 0\) có 2 nghiệm trái dấu \( \Leftrightarrow m - 1 < 0 \Leftrightarrow m < 1\)
\( \Rightarrow \) Chọn A
Bài 6.44 trang 24 sách bài tập Toán 10 - Kết nối tri thức thường xoay quanh việc sử dụng các tính chất của vectơ để chứng minh các đẳng thức hoặc giải quyết các bài toán hình học. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài 6.44 trang 24, học sinh cần đọc kỹ đề bài, xác định rõ yêu cầu của bài toán và các dữ kiện đã cho. Sau đó, cần phân tích bài toán để tìm ra hướng giải phù hợp. Một số phương pháp thường được sử dụng để giải các bài toán liên quan đến vectơ bao gồm:
(Giả sử đề bài là: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2)
Lời giải:
Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}.
Ta có: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM}.
Mà overrightarrow{BM} = (1/2)overrightarrow{BC} = (1/2)(overrightarrow{AC} -overrightarrow{AB}).
Do đó: overrightarrow{AM} =overrightarrow{AB} + (1/2)(overrightarrow{AC} -overrightarrow{AB}) =overrightarrow{AB} + (1/2)overrightarrow{AC} - (1/2)overrightarrow{AB} = (1/2)overrightarrow{AB} + (1/2)overrightarrow{AC} = (overrightarrow{AB} +overrightarrow{AC})/2.
Vậy, overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2.
Để nắm vững kiến thức về vectơ và rèn luyện kỹ năng giải bài tập, học sinh nên làm thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Ngoài ra, học sinh cũng nên tham khảo các bài giảng trực tuyến và các video hướng dẫn giải bài tập để hiểu rõ hơn về các khái niệm và phương pháp giải.
Bài 6.44 trang 24 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải bài tập hình học. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các em học sinh sẽ tự tin hơn trong việc học tập môn Toán.