Bài 3.30 trang 42 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.30 trang 42, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Độ dài đường cao
Đề bài
Tam giác \(ABC\) có \(\widehat A = {45^ \circ },\,\,c = 6,\,\,\widehat B = {75^ \circ }.\)
Độ dài đường cao \({h_b}\) bằng:
A. \(3\sqrt 2 .\)
B. \(\frac{3}{{\sqrt 2 }}.\)
C. \(6\sqrt 2 .\)
D. \(2\sqrt 3 .\)
Phương pháp giải - Xem chi tiết
- Tính góc C của \(\Delta ABC\)
- Áp dụng định lý sin để tính cạnh b: \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
- Tính diện tích \(\Delta ABC = \frac{1}{2}bc.\sin A\)
- Tính \({h_b} = \frac{{2{S_{\Delta ABC}}}}{b}\)
Lời giải chi tiết
Ta có: \(\widehat A + \widehat B + \widehat C = {180^ \circ }\,\, \Rightarrow \,\,\widehat C = {180^ \circ } - \widehat A - \widehat B = {60^ \circ }\)
Áp dụng định lý sin trong \(\Delta ABC\) ta có:
\(\begin{array}{l}\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\\ \Rightarrow \,\,b = \frac{{c.\sin B}}{{\sin C}} = \frac{{6.\sin {{75}^ \circ }}}{{\sin {{60}^ \circ }}} = 6 + 3\sqrt 2 \,\,\left( {dvdd} \right)\end{array}\)
Diện tích \(\Delta ABC\) là:
\({S_{\Delta ABC}} = \frac{1}{2}bc.\sin A = \frac{1}{2}.\left( 6 + 3\sqrt 2 \right).6.\sin {45^ \circ } = 9 + 3\sqrt 3 \,\,\left( {dvdt} \right)\)
Ta có: \({S_{\Delta ABC}} = \frac{1}{2}{h_b}.b\,\, \Rightarrow \,\,{h_b} = \frac{{2{S_{\Delta ABC}}}}{b} = \frac{{2.(9 + 3\sqrt 3)}}{{6 + 3\sqrt 2 }} = 3\sqrt 2 \,\,\left( {dvdd} \right)\)
Chọn A
Bài 3.30 trang 42 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ, thường là xác định mối quan hệ giữa các vectơ hoặc tính toán các đại lượng hình học sử dụng vectơ. Để giải bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần phân tích bài toán để tìm ra mối liên hệ giữa các yếu tố đã cho và yêu cầu của bài toán. Việc vẽ hình minh họa có thể giúp học sinh hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
(Nội dung lời giải chi tiết bài 3.30 trang 42 sẽ được trình bày tại đây. Lời giải cần bao gồm các bước giải rõ ràng, chi tiết, kèm theo giải thích cụ thể để học sinh dễ hiểu. Ví dụ:)
Giả sử bài toán yêu cầu tính độ dài của một đoạn thẳng khi biết tọa độ của hai điểm đầu mút. Ta có thể sử dụng công thức tính khoảng cách giữa hai điểm trong hệ tọa độ để giải quyết bài toán này.
Công thức tính khoảng cách giữa hai điểm A(x1, y1) và B(x2, y2) là:
AB = √((x2 - x1)2 + (y2 - y1)2)
Vectơ là một công cụ mạnh mẽ trong hình học, được sử dụng để giải quyết nhiều bài toán phức tạp. Một số ứng dụng của vectơ trong hình học bao gồm:
Bài 3.30 trang 42 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bằng cách nắm vững các kiến thức cơ bản, phân tích bài toán một cách cẩn thận và áp dụng các công thức và định lý một cách chính xác, học sinh có thể giải quyết bài toán này một cách hiệu quả. Giaitoan.edu.vn hy vọng rằng lời giải chi tiết và hướng dẫn giải bài tập này sẽ giúp các em học sinh học tập tốt hơn môn Toán 10.