Bài 6.14 trang 14 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.14 trang 14, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tìm parabol y = a{x^2} + bx + 2, biết rằng parabol đó
Đề bài
Tìm parabol \(y = a{x^2} + bx + 2\), biết rằng parabol đó
a) Đi qua hai điểm \(M(1;5)\) và \(N( - 2;8)\)
b) Đi qua điểm \(A(3; - 4)\) và có trục đối xứng \(x = - \frac{3}{2}\)
c) Có đỉnh \(I(2; - 2)\)
Phương pháp giải - Xem chi tiết
Bước 1: Nếu biết tọa độ điểm thuộc đồ thị (kể cả đỉnh) thay tọa độ các điểm vào hàm số
Bước 2: Nếu biết PT trục đối xứng x = c hay hoành độ đỉnh parabol ta được \( - \frac{b}{{2a}} = c\).
Bước 3: Giải các PT để tìm hai giá trị a, b tương ứng
Lời giải chi tiết
a) Thay tọa độ điểm \(M(1;5)\) và \(N( - 2;8)\) vào hàm số ta có hệ PT:
\(\left\{ \begin{array}{l}5 = a + b + 2\\8 = 4a - 2b + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 3\\4a - 2b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 1\end{array} \right.\)
Vậy hàm số có dạng \(y = 2{x^2} + x + 2\)
b) Thay tọa độ điểm \(A(3; - 4)\) ta có PT: \(9a + 3b + 2 = - 4 \Leftrightarrow 3a + b = - 2\)
Parabol có trục đối xứng \(x = - \frac{3}{2}\) \( \Rightarrow \) \( - \frac{b}{{2a}} = - \frac{3}{2} \Leftrightarrow 3a - b = 0\)
Khi đó ta có hệ PT: \(\left\{ \begin{array}{l}3a + b = - 2\\3a - b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{3}\\b = - 1\end{array} \right.\)
Vậy hàm số có dạng \(y = - \frac{1}{3}{x^2} - x + 2\)
c) Parabol có đỉnh \(I(2; - 2)\) \( \Rightarrow - \frac{b}{{2a}} = 2 \Leftrightarrow 4a + b = 0\)
Thay tọa độ đỉnh \(I(2; - 2)\) vào hàm số ta có PT: \(4a + 2b + 2 = - 2 \Leftrightarrow 2a + b = - 2\)
Khi đó ta có hệ PT: \(\left\{ \begin{array}{l}4a + b = 0\\2a + b = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 4\end{array} \right.\)
Vậy hàm số có dạng: \(y = {x^2} - 4x + 2\)
Bài 6.14 trang 14 sách bài tập Toán 10 Kết nối tri thức thuộc chương 1: Vectơ trong mặt phẳng. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Đề bài: (Nội dung đề bài cụ thể sẽ được chèn vào đây - ví dụ: Cho tam giác ABC, tìm vectơ...)
Lời giải:
(Giải thích chi tiết từng bước, kèm theo hình vẽ minh họa nếu cần thiết. Ví dụ: Để tìm vectơ AB, ta có thể sử dụng công thức AB = B - A, trong đó A và B là tọa độ của hai điểm A và B.)
Để giúp các em hiểu rõ hơn về phương pháp giải bài tập vectơ, chúng ta cùng xét một số ví dụ minh họa sau:
Ví dụ 1: (Đề bài ví dụ 1 và lời giải chi tiết)
Ví dụ 2: (Đề bài ví dụ 2 và lời giải chi tiết)
Ngoài ra, các em có thể tự giải các bài tập tương tự sau để rèn luyện kỹ năng:
Khi giải bài tập về vectơ, các em cần lưu ý một số điểm sau:
Bài 6.14 trang 14 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng. |
Tích vô hướng | Một phép toán giữa hai vectơ. |