Bài 7.8 trang 32 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập 7.8 trang 32, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
a) Lập phương trình đường thẳng BC b) Tìm tọa độ của điểm C biết rằng hoành hộ của điểm C là số dương
Đề bài
Trong mặt phẳng \(Oxy\), cho hình vuông ABCD có \(A\left( { - 1;0} \right)\) và \(B\left( {1;2} \right)\)
a) Lập phương trình đường thẳng BC
b) Tìm tọa độ của điểm C biết rằng hoành hộ của điểm C là số dương
Phương pháp giải - Xem chi tiết
+ Phương trình tổng quát đường thẳng đi qua \(M\left( {{x_1},{y_1}} \right)\) nhận \(\overrightarrow {{a_1}} = \left( {a;b} \right)\) là vecto pháp tuyến là: \(a\left( {x - {x_1}} \right) + b\left( {y - {y_1}} \right) = 0\)
Lời giải chi tiết
a) Phương trình đường thẳng BC đi qua \(B\left( {1;2} \right)\) và nhận \(\overrightarrow {AB} = \left( {2;2} \right) = 2\left( {1;1} \right)\) là vecto pháp tuyến
Phương trình tổng quát của BC: \(1\left( {x - 1} \right) + 1\left( {y - 2} \right) = 0 \Rightarrow x + y - 3 = 0\)
b) C thuộc đường thẳng BC \( \Rightarrow C\left( {t;3 - t} \right)\)
+ \(AB = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \)
+ \(\overrightarrow {BC} = \left( {t - 1;1 - t} \right) \Rightarrow BC = \sqrt {{{\left( {t - 1} \right)}^2} + {{\left( {1 - t} \right)}^2}} = \left| {t - 1} \right|\sqrt 2 \)
+ \(AB = BC \Rightarrow \left| {t - 1} \right|\sqrt 2 = 2\sqrt 2 \Rightarrow \left| {t - 1} \right| = 2 \Rightarrow \left[ \begin{array}{l}t = 3\\t = - 1\end{array} \right.\)
Với hoành độ của C là số dương => \(C\left( {3;0} \right)\)
Bài 7.8 trang 32 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài toán ứng dụng thực tế về vectơ trong hình học. Để giải bài toán này, học sinh cần nắm vững các kiến thức về:
Trước khi đi vào giải chi tiết, chúng ta cần phân tích bài toán để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp một hình vẽ hoặc một mô tả về một tình huống hình học, và yêu cầu tính toán một đại lượng nào đó liên quan đến vectơ (ví dụ: độ dài, góc, diện tích).
Dưới đây là lời giải chi tiết cho bài 7.8 trang 32 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, dễ hiểu, kèm theo các giải thích cụ thể để giúp các em học sinh nắm vững phương pháp.
(Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng, và kết quả cuối cùng. Ví dụ:)
Để giúp các em học sinh hiểu rõ hơn về cách giải bài toán 7.8 trang 32, chúng ta sẽ xem xét một ví dụ minh họa cụ thể.
(Nội dung ví dụ minh họa sẽ được trình bày tại đây, bao gồm một bài toán tương tự và lời giải chi tiết.)
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, các em học sinh có thể tham khảo thêm các bài tập sau:
Bài 7.8 trang 32 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bằng cách nắm vững các kiến thức cơ bản và áp dụng các phương pháp giải phù hợp, các em học sinh có thể tự tin giải quyết các bài toán tương tự.
Hy vọng rằng, với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh đã hiểu rõ hơn về cách giải bài toán 7.8 trang 32. Chúc các em học tập tốt!
Công thức | Mô tả |
---|---|
a.b = |a||b|cos(θ) | Tích vô hướng của hai vectơ a và b |
|a| = √(x2 + y2) | Độ dài của vectơ a |
xm = (x1 + x2)/2 | Hoành độ trung điểm của đoạn thẳng có hai đầu mút (x1, y1) và (x2, y2) |