Logo Header
  1. Môn Toán
  2. Giải bài 4.18 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.18 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.18 trang 54 Sách bài tập Toán 10 - Kết nối tri thức

Bài 4.18 trang 54 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.18 trang 54, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho tam giác ABC đều có trọng tâm O. M là một điểm tùy ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.

Đề bài

Cho tam giác \(ABC\) đều có trọng tâm \(O.\) \(M\) là một điểm tùy ý nằm trong tam giác. Gọi \(D,\,\,E,\,\,F\) theo thứ tự là hình chiếu vuông góc của \(M\) trên \(BC,\,\,CA,\,\,AB.\) Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)

Lời giải chi tiết

Giải bài 4.18 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

Gọi đường thẳng đi qua \(M\) và song song với \(AB\) cắt \(BC,\,\,AC\) lần lượt tại \(G,\,\,J\); đường thẳng đi qua \(M\) và song song với \(BC\) cắt \(AB,\,\,AC\) lần lượt tại \(P,\,\,I\); đường thẳng đi qua \(M\) và song song với \(AC\) cắt \(AB,\,\,BC\) lần lượt tại \(Q,\,\,H\).

Ta có: \(MG\)//\(AB\) \( \Rightarrow \) \(\widehat {MGH} = \widehat {ABC} = {60^ \circ }\)

\(MH\)//\(AC\) \( \Rightarrow \) \(\widehat {MHG} = \widehat {ACB} = {60^ \circ }\)

\( \Rightarrow \) \(\Delta MHG\) là tam giác đều

Mặt khác \(MD \bot HG\)

\( \Rightarrow \) \(D\) là trung điểm của \(GH\)

\( \Rightarrow \) \(2\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {MH} \) (1)

Chứng minh tương tự ta được: \(2\overrightarrow {ME} = \overrightarrow {MQ} + \overrightarrow {MP} \), \(2\overrightarrow {MF} = \overrightarrow {MI} + \overrightarrow {MJ} \) (2)

Ta có: tứ giác \(AQMJ,\) \(BPMG,\) \(CIMH\) là hình bình hành

Từ (1) và (2) \( \Rightarrow \) \(2\left( {\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} } \right) = \overrightarrow {MG} + \overrightarrow {MH} + \overrightarrow {MQ} + \overrightarrow {MP} + \overrightarrow {MI} + \overrightarrow {MJ} \)

\(\begin{array}{l} = \left( {\overrightarrow {MG} + \overrightarrow {MJ} } \right) + \left( {\overrightarrow {MI} + \overrightarrow {MH} } \right) + \left( {\overrightarrow {MP} + \overrightarrow {MG} } \right)\\ = \overrightarrow {MA} + \overrightarrow {MC} + \overrightarrow {MB} \\ = \overrightarrow {MO} + \overrightarrow {OA} + \overrightarrow {MO} + \overrightarrow {OC} + \overrightarrow {MO} + \overrightarrow {OB} \\ = 3\overrightarrow {MO} + \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\\ = 3\overrightarrow {MO} \end{array}\)

\( \Rightarrow \) \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} \) (đpcm)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.18 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.18 trang 54 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.18 trang 54 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán trên vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để tính góc giữa hai vectơ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, giải các bài toán về đường thẳng, tam giác, hình vuông, hình chữ nhật,...

Phân tích bài toán:

Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra phương pháp giải phù hợp.

Lời giải chi tiết:

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 4.18 trang 54, chúng ta sẽ cùng nhau đi qua lời giải chi tiết sau đây:

(Ở đây sẽ là lời giải chi tiết bài 4.18 trang 54, bao gồm các bước giải, giải thích rõ ràng và minh họa bằng hình vẽ nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.)

Ví dụ minh họa:

Để giúp các em học sinh hiểu rõ hơn về ứng dụng của vectơ trong hình học, chúng ta sẽ cùng nhau xem xét một ví dụ minh họa sau đây:

(Ở đây sẽ là một ví dụ minh họa liên quan đến vectơ và ứng dụng trong hình học, giúp học sinh hiểu rõ hơn về cách vận dụng kiến thức đã học để giải quyết các bài toán thực tế.)

Luyện tập:

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, các em học sinh có thể tự giải các bài tập sau đây:

  1. Bài 4.19 trang 54 sách bài tập Toán 10 Kết nối tri thức
  2. Bài 4.20 trang 55 sách bài tập Toán 10 Kết nối tri thức
  3. Bài 4.21 trang 55 sách bài tập Toán 10 Kết nối tri thức

Kết luận:

Bài 4.18 trang 54 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng rằng, với lời giải chi tiết và ví dụ minh họa trên đây, các em học sinh đã nắm vững kiến thức và tự tin giải các bài tập tương tự.

Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10