Logo Header
  1. Môn Toán
  2. Giải bài 3.34 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 3.34 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 3.34 trang 42 Sách bài tập Toán 10 - Kết nối tri thức

Bài 3.34 trang 42 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.34 trang 42, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Diện tích của tam giác ABC bằng:

Đề bài

Tam giác \(ABC\) có \(\widehat C = {60^ \circ },\,\,AC = 2,\,\,AB = \sqrt 7 .\) Diện tích của tam giác \(ABC\) bằng:

A. \(\frac{{\sqrt 3 }}{2}.\)

B. \(3\sqrt 3 .\)

C. \(\frac{{3\sqrt 3 }}{2}.\)

D. \(\sqrt 3 .\)

Phương pháp giải - Xem chi tiếtGiải bài 3.34 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

- Áp dụng định lý sin để tính \(\widehat B\): \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\)

- Tính \(\widehat A\): \(\widehat A = {180^ \circ } - \widehat B - \widehat C.\)

- Tính diện tích \(\Delta ABC\): \(S = \frac{1}{2}AB.AC.\sin A\)

Lời giải chi tiết

Áp dụng định lý sin, ta có:

\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\,\, \Leftrightarrow \,\,\frac{2}{{\sin B}} = \frac{{\sqrt 7 }}{{\sin {{60}^ \circ }}}\,\, \Leftrightarrow \,\,\sin B = \frac{{\sqrt {21} }}{7}\,\, \Leftrightarrow \,\,\widehat B \approx {41^ \circ }\)

Ta có: \(\widehat A = {180^ \circ } - \widehat B - \widehat C = {180^ \circ } - {41^ \circ } - {60^ \circ } = {79^ \circ }\)

Diện tích \(\Delta ABC\) là:

\(S = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.\sqrt 7 .2.\sin {79^ \circ } \approx \frac{{3\sqrt 3 }}{2}\)

Chọn C.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3.34 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Bài viết liên quan

Giải bài 3.34 trang 42 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 3.34 trang 42 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ trong mặt phẳng tọa độ. Để giải bài toán này, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán trên vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ.

Phân tích bài toán

Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp thông tin về các điểm trong mặt phẳng tọa độ và yêu cầu tính toán các vectơ liên quan, hoặc xác định mối quan hệ giữa các vectơ.

Lời giải chi tiết

Dưới đây là lời giải chi tiết bài 3.34 trang 42 sách bài tập Toán 10 Kết nối tri thức:

(Nội dung lời giải chi tiết bài 3.34 sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)

  1. Bước 1: Xác định tọa độ của các vectơ liên quan.
  2. Bước 2: Thực hiện các phép toán trên vectơ (cộng, trừ, nhân với một số thực).
  3. Bước 3: Tính tích vô hướng của các vectơ.
  4. Bước 4: Sử dụng kết quả tích vô hướng để suy ra mối quan hệ giữa các vectơ (ví dụ: vuông góc, song song).
  5. Bước 5: Kết luận.

Ví dụ minh họa

Để giúp các em hiểu rõ hơn về phương pháp giải bài toán, chúng ta sẽ xem xét một ví dụ minh họa:

(Ví dụ minh họa sẽ được trình bày tại đây, bao gồm đề bài, lời giải, và giải thích chi tiết.)

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 10 Kết nối tri thức, hoặc trên các trang web học toán online.

Tổng kết

Bài 3.34 trang 42 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp các em học sinh nắm vững kiến thức về vectơ và rèn luyện kỹ năng giải bài tập. Hy vọng với lời giải chi tiết và ví dụ minh họa trên, các em sẽ tự tin hơn khi giải bài tập này.

Các chủ đề liên quan

  • Giải bài tập Toán 10 Kết nối tri thức
  • Vectơ trong mặt phẳng tọa độ
  • Tích vô hướng của hai vectơ
STTNội dung
1Định nghĩa vectơ
2Các phép toán trên vectơ
3Tích vô hướng của hai vectơ
Nguồn: Giaitoan.edu.vn

Tài liệu, đề thi và đáp án Toán 10