Bài 4.43 trang 67 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.43 trang 67, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3
Đề bài
Cho tam giác \(ABC\) đều, trọng tâm \(G,\) có độ dài các cạnh bằng 3. Độ dài vectơ \(\overrightarrow {AG} \) bằng
A. \(\sqrt 3 \)
B. \(\frac{{3\sqrt 3 }}{2}\)
C. \(\frac{{\sqrt 3 }}{2}\)
D. \(2\sqrt 3 \)
Lời giải chi tiết
Gọi \(M\) là trung điểm của cạnh \(BC\)
\( \Rightarrow \) \(AM = \frac{{3\sqrt 3 }}{2}\)
Xét \(\Delta ABC\) đều có \(G\) là trọng tâm của tam giác
\( \Rightarrow \) \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \)
\( \Rightarrow \left| {\overrightarrow {AG} } \right| = \frac{2}{3}\left| {\overrightarrow {AM} } \right| = \frac{2}{3}.\frac{{3\sqrt 3 }}{2} = \sqrt 3 \)
Chọn A.
Bài 4.43 trang 67 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra hướng giải quyết phù hợp. Thông thường, bài toán về vectơ có thể được giải bằng các phương pháp sau:
(Nội dung lời giải chi tiết bài 4.43 trang 67 sẽ được trình bày tại đây. Bao gồm các bước giải, giải thích rõ ràng từng bước và kết quả cuối cùng. Lời giải cần được trình bày một cách logic, dễ hiểu và chính xác.)
Để giúp các em học sinh hiểu rõ hơn về cách giải bài toán về vectơ, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự. Các ví dụ này sẽ giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Vectơ không chỉ là một khái niệm toán học trừu tượng mà còn có nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 4.43 trang 67 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng rằng với lời giải chi tiết và các lưu ý quan trọng mà Giaitoan.edu.vn đã cung cấp, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập. Chúc các em học tập tốt!
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng, xác định bởi điểm gốc và điểm cuối. |
Tích vô hướng | Một phép toán giữa hai vectơ, cho kết quả là một số thực. |
Bảng tóm tắt các khái niệm quan trọng. |