Bài 1.26 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.26 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Giải các hệ phương trình sau: a) (left{ begin{array}{l}0,4x + 0,3y = 1,1\ - 0,5x + 0,2y = 1,5end{array} right.); b) (left{ begin{array}{l}frac{1}{3}x - frac{1}{2}y = 1\ - 4x + 6y = 3end{array} right.); c) (left{ begin{array}{l}0,2x - 0,3y = 0,6\ - frac{1}{3}x + frac{1}{2}y = - 1end{array} right.).
Đề bài
Giải các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}0,4x + 0,3y = 1,1\\ - 0,5x + 0,2y = 1,5\end{array} \right.\);
b) \(\left\{ \begin{array}{l}\frac{1}{3}x - \frac{1}{2}y = 1\\ - 4x + 6y = 3\end{array} \right.\);
c) \(\left\{ \begin{array}{l}0,2x - 0,3y = 0,6\\ - \frac{1}{3}x + \frac{1}{2}y = - 1\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Giải phương trình bằng phương pháp cộng đại số:
Bước 1: Đưa hệ phương trình đã cho về hệ phương trình có hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau bằng cách nhân hai vế của mỗi phương trình với một số thích hợp (khác 0).
Bước 2: Cộng hay trừ từng vế của hai phương trình trong hệ để được phương trình chỉ còn chứa một ẩn.
Bước 3: Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ đã cho.
Lời giải chi tiết
a) Nhân hai vế của phương trình thứ nhất với 5, nhân hai vế của phương trình thứ hai với 4, ta được hệ \(\left\{ \begin{array}{l}2x + 1,5y = 5,5\\ - 2x + 0,8y = 6\end{array} \right.\).
Cộng từng vế hai phương trình của hệ mới, ta được \(2,3y = 11,5\), suy ra \(y = 5\).
Thay \(y = 5\) vào phương trình thứ nhất của hệ ban đầu ta có: \(0,4x + 0,3.5 = 1,1\), suy ra \(x = - 1\)
Vậy hệ phương trình đã cho có nghiệm \(\left( { - 1;5} \right)\).
b) Nhân hai vế của phương trình thứ nhất với 12 ta được hệ phương trình \(\left\{ \begin{array}{l}4x - 6y = 12\\ - 4x + 6y = 3\end{array} \right.\).
Cộng từng vế hai phương trình của hệ mới, ta được \(0x + 0y = 15\). Không có giá trị nào của x và y thỏa mãn hệ thức \(0x + 0y = 15\). Vậy hệ phương trình đã cho vô nghiệm.
c) Nhân hai vế của phương trình thứ nhất với 10, nhân hai vế của phương trình thứ hai với 6, ta được hệ \(\left\{ \begin{array}{l}2x - 3y = 6\\ - 2x + 3y = - 6\end{array} \right.\).
Cộng từng vế của hai phương trình trong hệ mới ta có: \(0x + 0y = 0\). Hệ thức này đúng với mọi giá trị của x và y.
Với giá trị tùy ý của y, giá trị của x được tính bởi hệ thức \(2x - 3y = 6\), suy ra \(x = \frac{{6 + 3y}}{2}\).
Vậy hệ phương trình đã cho có nghiệm là \(\left( {\frac{{6 + 3y}}{2};y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
Bài 1.26 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1 thuộc chương Hàm số bậc nhất. Để giải bài này, học sinh cần nắm vững các kiến thức về:
Nội dung bài tập:
Bài 1.26 yêu cầu học sinh xét một tình huống thực tế liên quan đến sự thay đổi của một đại lượng theo một đại lượng khác, và xác định hàm số bậc nhất mô tả mối quan hệ đó.
Để giải bài 1.26, ta thực hiện các bước sau:
Ví dụ minh họa:
Giả sử bài toán cho biết khi x = 1 thì y = 3, và khi x = 2 thì y = 5. Ta có thể tính hệ số a như sau:
a = (y2 - y1) / (x2 - x1) = (5 - 3) / (2 - 1) = 2
Vậy hàm số có dạng y = 2x + b. Để tìm b, ta thay một trong hai điểm đã biết vào phương trình. Ví dụ, thay x = 1 và y = 3:
3 = 2 * 1 + b => b = 1
Vậy hàm số cần tìm là y = 2x + 1.
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Giaitoan.edu.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ hiểu rõ hơn về bài 1.26 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1 và tự tin hơn trong quá trình học tập.
Chúc các em học tốt!