Bài 5.20 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và ứng dụng thực tế của hàm số để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.20 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho AM và AN là hai tiếp tuyến cắt nhau của đường tròn (O), trong đó M và N là hai tiếp điểm. Gọi E là một điểm thuộc cung nhỏ MN. Tiếp tuyến của (O) tại E cắt AM tại B và cắt AN tại C. Biết (AB = 10cm), (AC = 7cm) và (BC = 6cm). Tính độ dài của các đoạn thẳng AM, AN, BM và CN.
Đề bài
Cho AM và AN là hai tiếp tuyến cắt nhau của đường tròn (O), trong đó M và N là hai tiếp điểm. Gọi E là một điểm thuộc cung nhỏ MN. Tiếp tuyến của (O) tại E cắt AM tại B và cắt AN tại C. Biết \(AB = 10cm\), \(AC = 7cm\) và \(BC = 6cm\). Tính độ dài của các đoạn thẳng AM, AN, BM và CN.
Phương pháp giải - Xem chi tiết
+ Dựa vào tính chất hai tiếp tuyến cắt nhau ta có \(AM = AN\), \(BM = BE\), \(CE = CN\).
+ \(AM + AN = AB + AC + CE\), từ đó tính được AM, AN.
+ \(BM = AM - AN,CN = AN - CN\).
Lời giải chi tiết
Vì AM và AN là hai tiếp tuyến cắt nhau của (O) nên \(AM = AN\).
Vì BM và BE là hai tiếp tuyến cắt nhau của (O) nên \(BM = BE\).
Vì CE và CN là hai tiếp tuyến cắt nhau của (O) nên \(CE = CN\).
Ta có:
\(AM + AN = AB + BM + AC + CN \)
\(= AB + BE + AC + CE = AB + AC + \left( {BE + CE} \right)\)
\( = AB + AC + BC\)
Suy ra \(2AM = 10 + 7 + 6 = 23\left( {cm} \right)\) nên \(AM = AN = 11,5\left( {cm} \right)\)
\(BM = AM - AB = 11,5 - 10 = 1,5\left( {cm} \right),\)
\(CN = AN - AC = 11,5 - 7 = 4,5\left( {cm} \right)\).
Bài 5.20 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1 thuộc chương Hàm số bậc nhất. Bài toán này thường liên quan đến việc xác định hàm số bậc nhất dựa trên các thông tin cho trước, hoặc ứng dụng hàm số bậc nhất để mô tả và giải quyết các bài toán thực tế.
Trước khi bắt đầu giải bài, học sinh cần đọc kỹ đề bài, xác định rõ các thông tin đã cho và yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót.
Để giải bài 5.20 trang 65, học sinh cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết của bài toán, bao gồm các bước giải, giải thích rõ ràng và kết luận. Ví dụ:)
Ví dụ: Giả sử đề bài yêu cầu tìm hàm số bậc nhất có đồ thị đi qua hai điểm A(1; 2) và B(2; 5).
Ngoài bài 5.20, còn rất nhiều bài tập tương tự về hàm số bậc nhất. Để giải tốt các bài tập này, học sinh cần luyện tập thường xuyên và nắm vững các kiến thức cơ bản.
Một số dạng bài tập thường gặp:
Để giải bài tập hàm số bậc nhất một cách nhanh chóng và chính xác, học sinh có thể áp dụng một số mẹo sau:
Bài 5.20 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ tự tin hơn trong việc học Toán 9.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!