Logo Header
  1. Môn Toán
  2. Giải bài 5.21 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1

Giải bài 5.21 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1

Giải bài 5.21 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1

Bài 5.21 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và ứng dụng thực tế của hàm số để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.21 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho tam giác ABC vuông tại A, có đường cao AH. a) Chứng minh rằng BC tiếp xúc với đường tròn (A) bán kính AH; b) Gọi M và N là các điểm đối xứng với H lần lượt qua AB và AC. Chứng minh rằng BM và CN là hai tiếp tuyến của (A); c) Chứng minh rằng MN là một đường kính của (A); d) Tính diện tích của tứ giác BMNC, biết (HB = 2cm) và (HC = 4,5cm).

Đề bài

Cho tam giác ABC vuông tại A, có đường cao AH.

a) Chứng minh rằng BC tiếp xúc với đường tròn (A) bán kính AH;

b) Gọi M và N là các điểm đối xứng với H lần lượt qua AB và AC. Chứng minh rằng BM và CN là hai tiếp tuyến của (A);

c) Chứng minh rằng MN là một đường kính của (A);

d) Tính diện tích của tứ giác BMNC, biết \(HB = 2cm\) và \(HC = 4,5cm\).

Phương pháp giải - Xem chi tiếtGiải bài 5.21 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1 1

a) + Chỉ ra \(AH \bot BC\) tại H, H thuộc (A, AH) nên BC tiếp xúc với đường tròn (A) bán kính AH.

b) + Chứng minh \(\Delta AMB = \Delta AHB\left( {c.c.c} \right)\).

Do đó, \(\widehat {AMB} = \widehat {AHB} = {90^o}\).

+ Chứng minh M thuộc đường tròn (A). Suy ra, BM vuông góc với AM tại M nên BM là tiếp tuyến của (A) tại M.

+ Chứng minh \(\Delta ANC = \Delta AHC\left( {c.c.c} \right)\).

Do đó, \(\widehat {ANC} = \widehat {AHC} = {90^o}\).

+ Chỉ ra N thuộc đường tròn (A).

+ Suy ra, CN vuông góc với AN tại N nên AN là tiếp tuyến của (A) tại N.

c) + Chứng minh \(\widehat {MAB} = \widehat {HAB}\), \(\widehat {NAC} = \widehat {HAC}\), \(\widehat {HAB} + \widehat {HAC} = {90^o}\).

+ Do đó, \(\widehat {MAB} + \widehat {HAB} + \widehat {NAC} + \widehat {HAC} = {180^o}\)

+ Suy ra, ba điểm M, A, N thẳng hàng. Vậy MN là đường kính của (A).

d) + Chứng minh \(BM = BH\), \(CN = CH\).

+ Do đó, \(BM + CN = BH + CH = 2 + 4,5 = 6,5\left( {cm} \right)\)

+ Chứng minh $\Delta HBA\backsim \Delta HAC\left( g.g \right)$ nên \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\), từ đó tính được AH, tính được MN.

+ Chứng minh tứ giác BMNC là hình thang vuông.

+ Diện tích hình thang BMNC là: \(S = \frac{1}{2}MN\left( {BM + CN} \right)\).

Lời giải chi tiết

Giải bài 5.21 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1 2

a) Vì AH là đường cao của tam giác ABC nên \(AH \bot BC\) tại H. Mà H thuộc (A, AH) nên BC tiếp xúc với đường tròn (A) bán kính AH.

b) Vì M đối xứng với H qua AB nên \(AM = AH\) và \(BM = BH\), AB chung nên \(\Delta AMB = \Delta AHB\left( {c.c.c} \right)\).

Do đó, \(\widehat {AMB} = \widehat {AHB} = {90^o}\).

Lại có \(AM = AH\) nên M thuộc đường tròn (A).

Suy ra, BM vuông góc với AM tại M nên BM là tiếp tuyến của (A) tại M.

Vì N đối xứng với H qua AC nên \(CN = CH\) và \(AH = AN\), AC chung nên \(\Delta ANC = \Delta AHC\left( {c.c.c} \right)\).

Do đó, \(\widehat {ANC} = \widehat {AHC} = {90^o}\).

Lại có \(AH = AN\) nên N thuộc đường tròn (A).

Suy ra, CN vuông góc với AN tại N nên AN là tiếp tuyến của (A) tại N.

c) Vì \(\Delta AMB = \Delta AHB\left( {cmt} \right)\) nên \(\widehat {MAB} = \widehat {HAB}\).

Vì \(\Delta ANC = \Delta AHC\left( {cmt} \right)\) nên \(\widehat {NAC} = \widehat {HAC}\).

Vì \(AH \bot BC\) tại H nên \(\widehat {HAB} + \widehat {HAC} = {90^o}\).

Do đó, \(\widehat {MAB} + \widehat {HAB} + \widehat {NAC} + \widehat {HAC} \) \(= 2\left( {\widehat {HAB} + \widehat {HAC}} \right) \) \(= {2.90^o} = {180^o}\)

Suy ra, ba điểm M, A, N thẳng hàng.

Mà \(AM = AN\left( { = AH} \right)\) nên MN là đường kính của (A).

d) Vì MB và BH là hai tiếp tuyến cắt nhau tại B của (A) nên \(BM = BH\).

Vì CN và CH là hai tiếp tuyến cắt nhau tại C của (A) nên \(CN = CH\). 

Do đó, \(BM + CN = BH + CH = 2 + 4,5 = 6,5\left( {cm} \right)\).

Ta có:

\(\widehat {BAH} + \widehat {ABC} = \widehat {ACH} + \widehat {ABC}\\\left( { = {{90}^o}} \right)\) nên \(\widehat {BAH} = \widehat {ACH}\).

Mà \(\widehat {BHA} = \widehat {CHA} = {90^o}\) nên $\Delta HBA\backsim \Delta HAC\left( g.g \right)$

nên \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\),

suy ra \(A{H^2} = BH.CH = 4,5.2 = 9\).

Suy ra \(AH = 3cm\).

Do đó, \(MN = 2AH = 6cm\).

Ta có: \(BM \bot MN,CN \bot MN\) nên BM//NC.

Do đó, tứ giác BMNC là hình thang vuông.

Diện tích hình thang BMNC là:

\(S = \frac{1}{2}MN\left( {BM + CN} \right) = \frac{1}{2}.6.6,5 = 19,5\left( {c{m^2}} \right)\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 5.21 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1 đặc sắc thuộc chuyên mục toán 9 trên nền tảng toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 5.21 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1: Hướng dẫn chi tiết

Bài 5.21 Sách bài tập Toán 9 - Kết nối tri thức tập 1 thuộc chương Hàm số bậc nhất. Bài toán này thường liên quan đến việc xác định hàm số bậc nhất dựa trên các thông tin cho trước, hoặc ứng dụng hàm số bậc nhất để mô tả và giải quyết các bài toán thực tế.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài, học sinh cần đọc kỹ đề bài, xác định rõ các thông tin đã cho và yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót.

Phương pháp giải bài toán hàm số bậc nhất

Để giải bài 5.21 trang 65, học sinh cần nắm vững các kiến thức sau:

  • Dạng tổng quát của hàm số bậc nhất: y = ax + b (a ≠ 0)
  • Ý nghĩa của a và b: a là hệ số góc, b là tung độ gốc.
  • Cách xác định hàm số bậc nhất khi biết hai điểm thuộc đồ thị: Thay tọa độ hai điểm vào phương trình y = ax + b để tìm a và b.
  • Ứng dụng của hàm số bậc nhất: Mô tả mối quan hệ giữa hai đại lượng thay đổi.

Lời giải chi tiết bài 5.21 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1

(Ở đây sẽ là lời giải chi tiết của bài toán, bao gồm các bước giải, giải thích rõ ràng và kết luận. Ví dụ:)

Ví dụ: Giả sử đề bài yêu cầu tìm hàm số bậc nhất có đồ thị đi qua hai điểm A(1; 2) và B(2; 5).

  1. Bước 1: Thay tọa độ điểm A(1; 2) vào phương trình y = ax + b, ta được: 2 = a(1) + b => a + b = 2 (1)
  2. Bước 2: Thay tọa độ điểm B(2; 5) vào phương trình y = ax + b, ta được: 5 = a(2) + b => 2a + b = 5 (2)
  3. Bước 3: Giải hệ phương trình (1) và (2) để tìm a và b.
  4. Bước 4: Kết luận hàm số bậc nhất cần tìm là y = 3x - 1.

Các dạng bài tập tương tự và cách giải

Ngoài bài 5.21, còn rất nhiều bài tập tương tự về hàm số bậc nhất. Để giải tốt các bài tập này, học sinh cần luyện tập thường xuyên và nắm vững các kiến thức cơ bản.

Một số dạng bài tập thường gặp:

  • Tìm hệ số góc và tung độ gốc của hàm số.
  • Xác định hàm số khi biết đồ thị hoặc một điểm thuộc đồ thị và hệ số góc.
  • Giải các bài toán ứng dụng hàm số bậc nhất vào thực tế.

Mẹo giải bài tập hàm số bậc nhất nhanh chóng và chính xác

Để giải bài tập hàm số bậc nhất một cách nhanh chóng và chính xác, học sinh có thể áp dụng một số mẹo sau:

  • Sử dụng công thức để tính hệ số góc và tung độ gốc.
  • Vẽ đồ thị hàm số để hình dung rõ hơn về bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tổng kết

Bài 5.21 trang 65 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ tự tin hơn trong việc học Toán 9.

Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục tri thức. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 9