Bài 10.10 trang 68 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 10.10 trang 68, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Một quả bóng thám không (loại bóng bay mang theo các dụng cụ đo thời tiết) có dạng hình cầu với đường kính 20cm. Hỏi diện tích bề mặt quả bóng là bao nhiêu (làm tròn kết quả đến hàng đơn vị của (c{m^2}))?
Đề bài
Một quả bóng thám không (loại bóng bay mang theo các dụng cụ đo thời tiết) có dạng hình cầu với đường kính 20cm. Hỏi diện tích bề mặt quả bóng là bao nhiêu (làm tròn kết quả đến hàng đơn vị của \(c{m^2}\))?
Phương pháp giải - Xem chi tiết
Diện tích mặt cầu bán kính R là: \(S = 4\pi {R^2}\).
Lời giải chi tiết
Bán kính của quả bóng là: \(R = 20:2 = 10\left( {cm} \right)\).
Diện tích bề mặt quả bóng là:
\(S = 4\pi {R^2} = 4\pi {.10^2} \approx 1\;257\left( {c{m^2}} \right)\).
Bài 10.10 trang 68 sách bài tập Toán 9 - Kết nối tri thức tập 2 yêu cầu chúng ta giải một bài toán liên quan đến ứng dụng của hàm số bậc nhất và hàm số bậc hai trong thực tế. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về:
Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và phân tích các thông tin đã cho. Xác định rõ các đại lượng cần tìm và mối quan hệ giữa chúng. Sau đó, chúng ta có thể lựa chọn phương pháp giải phù hợp.
(Nội dung lời giải chi tiết bài 10.10 trang 68 sẽ được trình bày tại đây. Lời giải cần bao gồm các bước giải rõ ràng, dễ hiểu, có giải thích cụ thể từng bước. Sử dụng các ký hiệu toán học chính xác và trình bày một cách logic.)
Ví dụ, nếu bài toán yêu cầu tìm phương trình đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2), chúng ta có thể sử dụng công thức:
(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)
Ngoài bài 10.10 trang 68, còn rất nhiều bài tập tương tự trong sách bài tập Toán 9 - Kết nối tri thức tập 2. Để nắm vững kiến thức và kỹ năng giải bài tập, chúng ta có thể tham khảo các dạng bài tập sau:
Để giải bài tập hàm số bậc nhất và bậc hai một cách nhanh chóng và chính xác, chúng ta có thể áp dụng một số mẹo sau:
Bài 10.10 trang 68 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng giúp chúng ta củng cố kiến thức về hàm số bậc nhất và bậc hai. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán.
Công thức | Mô tả |
---|---|
y = ax + b | Phương trình đường thẳng |
y = ax2 + bx + c | Phương trình parabol |
x = -b / 2a | Hoành độ đỉnh của parabol |