Bài 5.13 trang 62 sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hệ phương trình bậc nhất hai ẩn để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.13 trang 62, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Trên bờ của một cái ao cá hình tròn, người ta dựng ba cái chòi câu cá tại các điểm A, B và C. Biết rằng tam giác ABC cân tại B và có (AB = BC = 10m,widehat {ABC} = {120^o}) (H.5.5). a) Tính bán kính của ao cá. b) Tính độ dài quãng đường (men theo bờ ao) từ chòi A đến chòi B và chòi C (làm tròn kết quả đến chữ số thập phân thứ nhất).
Đề bài
Trên bờ của một cái ao cá hình tròn, người ta dựng ba cái chòi câu cá tại các điểm A, B và C. Biết rằng tam giác ABC cân tại B và có \(AB = BC = 10m,\widehat {ABC} = {120^o}\) (H.5.5).
a) Tính bán kính của ao cá.
b) Tính độ dài quãng đường (men theo bờ ao) từ chòi A đến chòi B và chòi C (làm tròn kết quả đến chữ số thập phân thứ nhất).
Phương pháp giải - Xem chi tiết
a) + Chứng minh O thuộc đường trung trực của AC.
+ Chứng minh AC là phân giác của góc ABC, từ đo tính được góc ABO.
+ Chứng minh tam giác ABO đều, suy ra \(AO = AB = 10m\).
b) Độ dài l của cung \({n^o}\) trên đường tròn (O; R) là \(l = \frac{n}{{180}}.\pi R\).
Lời giải chi tiết
a) Gọi O là tâm của hình tròn (ao), ta có \(OA = OC\) nên O thuộc đường trung trực của AC. Mà tam giác ABC cân tại B nên đường trung trực của AC cũng là phân giác của góc ABC nên \(\widehat {ABO} = \frac{1}{2}\widehat {ABC} = {60^o}\)
Tam giác AOB có \(OA = OB,\widehat {ABO} = {60^o}\) nên tam giác AOB đều. Do đó, \(AO = AB = 10m\). Vậy bán kính của ao cá bằng 10m.
b) Độ dài quãng đường từ chòi A đến chòi B là độ dài cung nhỏ AB.
Theo phần a, ta có \(\widehat {AOB} = {60^o}\) và bán kính đường tròn là 10m nên quãng đường đó là: \(\frac{{60}}{{180}}.\pi .10 = \frac{{10\pi }}{3} \approx 10,5\left( m \right)\)
Theo phần a ta thấy hai cung AB và BC có cùng số đo bằng 60 độ nên chúng bằng nhau và độ dài của chúng cũng bằng nhau. Do đó, quãng đường từ A đến C men theo bờ bằng 2 lần độ dài cung AB. Suy ra, độ dài quãng đường A đến C men theo bờ là: \(\frac{{20\pi }}{3} \approx 20,9\left( m \right)\).
Bài 5.13 trang 62 sách bài tập Toán 9 - Kết nối tri thức tập 1 yêu cầu giải bài toán về việc tìm hai số khi biết tổng và hiệu của chúng. Bài toán thường được trình bày dưới dạng một tình huống thực tế, đòi hỏi học sinh phải chuyển đổi thông tin thành hệ phương trình để giải.
Để giải bài toán này, chúng ta sẽ sử dụng phương pháp giải hệ phương trình bậc nhất hai ẩn. Có ba phương pháp phổ biến:
Đề bài: (Giả sử đề bài là: Tổng của hai số là 10, hiệu của hai số là 2. Tìm hai số đó.)
Giải:
Gọi hai số cần tìm là x và y. Theo đề bài, ta có hệ phương trình:
Sử dụng phương pháp cộng đại số:
Cộng hai phương trình lại, ta được:
(x + y) + (x - y) = 10 + 2
2x = 12
x = 6
Thay x = 6 vào phương trình x + y = 10, ta được:
6 + y = 10
y = 4
Vậy hai số cần tìm là 6 và 4.
Các bài tập tương tự bài 5.13 thường có dạng:
Để giải các bài tập này, bạn cần:
Khi giải bài toán hệ phương trình, bạn cần lưu ý:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập sau:
Bài 5.13 trang 62 sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải hệ phương trình bậc nhất hai ẩn. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn khi làm bài tập.