Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp học sinh hiểu bài và làm bài tập một cách hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, chính xác và dễ hiểu nhất để hỗ trợ các em học sinh trong quá trình học tập môn Toán.
a) Giải bất phương trình ( - 10x + 7 > 3x - 4). b) Chứng minh rằng (9{a^2} - 6a ge - 1) với mọi số thực a.
Đề bài
a) Giải bất phương trình \( - 10x + 7 > 3x - 4\).
b) Chứng minh rằng \(9{a^2} - 6a \ge - 1\) với mọi số thực a.
Phương pháp giải - Xem chi tiết
a) + Đưa bất phương trình về dạng bất phương trình bậc nhất một ẩn \(ax + b < 0\left( {a \ne 0} \right)\).
+ Bất phương trình \(ax + b < 0\left( {a \ne 0} \right)\) được giải như sau:
\(ax + b < 0\)
\(ax < - b\)
Nếu \(a > 0\) thì \(x < - \frac{b}{a}\).
Nếu \(a < 0\) thì \(x > - \frac{b}{a}\).
b) Chứng minh \(9{a^2} - 6a + 1 \ge 0\) với mọi số thực a, suy ra \(9{a^2} - 6a \ge - 1\) với mọi số thực a.
Lời giải chi tiết
a) \( - 10x + 7 > 3x - 4\)
\(3x + 10x < 7 + 4\)
\(13x < 11\)
\(x < \frac{{11}}{{13}}\)
Vậy bất phương trình có nghiệm \(x < \frac{{11}}{{13}}\).
b) Ta có: \(9{a^2} - 6a + 1 = {\left( {3a} \right)^2} - 2.3a + 1 = {\left( {3a - 1} \right)^2} \ge 0\) với mọi số thực a.
Do đó, \(9{a^2} - 6a \ge - 1\) với mọi số thực a.
Bài 3 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài 3 bao gồm các ý nhỏ khác nhau, mỗi ý yêu cầu học sinh thực hiện một nhiệm vụ cụ thể liên quan đến hàm số bậc nhất. Thông thường, các ý sẽ yêu cầu:
Để giải bài 3 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Ví dụ: Cho hàm số y = 2x - 1. Hãy tính giá trị của y khi x = 3.
Giải: Thay x = 3 vào công thức hàm số, ta có:
y = 2 * 3 - 1 = 6 - 1 = 5
Vậy, khi x = 3 thì y = 5.
Để củng cố kiến thức về hàm số bậc nhất, học sinh có thể giải thêm các bài tập tương tự trong sách bài tập Toán 9 - Kết nối tri thức tập 2 hoặc trên các trang web học toán online.
Bài 3 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc nhất. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, các em học sinh sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán.
Hàm số | Giá trị x | Giá trị y |
---|---|---|
y = 3x + 2 | 1 | 5 |
y = -x + 5 | 2 | 3 |