Bài 1.27 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và ứng dụng thực tế của hàm số để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.27 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hệ phương trình (left{ begin{array}{l}mx + 9y = m + 3\x + my = 2end{array} right.). Giải hệ phương trình đã cho trong mỗi trường hợp sau: a) (m = 1); b) (m = - 3); c) (m = 3).
Đề bài
Cho hệ phương trình \(\left\{ \begin{array}{l}mx + 9y = m + 3\\x + my = 2\end{array} \right.\).
Giải hệ phương trình đã cho trong mỗi trường hợp sau:
a) \(m = 1\);
b) \(m = - 3\);
c) \(m = 3\).
Phương pháp giải - Xem chi tiết
+ Thay giá trị của m vào hệ phương trình, ta thu được hệ hai phương trình bậc nhất hai ẩn.
+ Giải hệ phương trình vừa thu được đó bằng phương pháp cộng đại số ta tìm được nghiệm của hệ phương trình.
Lời giải chi tiết
a) Với \(m = 1\) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + 9y = 4\\x + y = 2\end{array} \right.\)
Trừ từng vế hai phương trình của hệ phương trình ta được: \(8y = 2\), suy ra \(y = \frac{1}{4}\).
Thay \(y = \frac{1}{4}\) vào phương trình thứ hai của hệ ta có: \(x + \frac{1}{4} = 2\), suy ra \(x = \frac{7}{4}\).
Vậy với \(m = 1\) thì hệ phương trình đã cho có nghiệm \(\left( {\frac{7}{4};\frac{1}{4}} \right)\).
b) Với \(m = - 3\) ta có hệ phương trình: \(\left\{ \begin{array}{l} - 3x + 9y = 0\\x - 3y = 2\end{array} \right.\)
Nhân hai vế của phương trình thứ hai với 3 ta được hệ phương trình \(\left\{ \begin{array}{l} - 3x + 9y = 0\\3x - 9y = 6\end{array} \right.\).
Cộng từng vế hai phương trình của hệ phương trình mới ta được: \(0x + 0y = 6\). Không có giá trị nào của x và y thỏa mãn hệ thức \(0x + 0y = 6\). Vậy với \(m = - 3\) thì hệ phương trình đã cho vô nghiệm.
c) Với \(m = 3\) ta có hệ phương trình: \(\left\{ \begin{array}{l}3x + 9y = 6\\x + 3y = 2\end{array} \right.\)
Nhân hai vế của phương trình thứ hai với 3 ta được hệ phương trình \(\left\{ \begin{array}{l}3x + 9y = 6\\3x + 9y = 6\end{array} \right.\).
Trừ từng vế hai phương trình của hệ phương trình mới ta được: \(0x + 0y = 0\), hệ thức này thỏa mãn với mọi giá trị của x và y. Với y tùy ý, giá trị của x được tính bởi hệ thức \(x + 3y = 2\), suy ra \(x = 2 - 3y\)
Vậy với \(m = 3\) thì hệ phương trình đã cho có nghiệm \(\left( {2 - 3y;y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
Bài 1.27 thuộc chương Hàm số bậc nhất, một trong những chương quan trọng của Toán 9. Để giải quyết bài toán này, học sinh cần nắm vững các khái niệm cơ bản về hàm số bậc nhất, bao gồm:
Bài 1.27 thường yêu cầu học sinh giải các bài toán liên quan đến việc xác định hàm số bậc nhất khi biết các thông tin về đồ thị, các điểm thuộc đồ thị hoặc các điều kiện khác. Các bài toán có thể có dạng:
(Ở đây sẽ là lời giải chi tiết của bài 1.27, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Ví dụ:)
Bài 1.27: Cho hàm số y = 2x + 3. Tìm tọa độ giao điểm của đồ thị hàm số với đường thẳng y = -x + 6.
Giải:
Ngoài bài 1.27, còn rất nhiều bài tập tương tự trong chương Hàm số bậc nhất. Để giải tốt các bài tập này, học sinh cần:
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em học sinh có thể tham khảo thêm các bài tập sau:
Bài 1.27 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc nhất và ứng dụng của nó. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin giải quyết bài tập này và các bài tập tương tự một cách hiệu quả.