Bài 6.9 trang 10 sách bài tập toán 9 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hệ phương trình bậc nhất hai ẩn để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.9 trang 10 sách bài tập toán 9 Kết nối tri thức tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Giải các phương trình sau bằng cách đưa về dạng tích: a) ({x^2} + 5x = 0); b) ({x^2} - 16 = 0); c) ({x^2} - 10x + 25 = 0); d) ({x^2} + 8x + 12 = 0).
Đề bài
Giải các phương trình sau bằng cách đưa về dạng tích:
a) \({x^2} + 5x = 0\);
b) \({x^2} - 16 = 0\);
c) \({x^2} - 10x + 25 = 0\);
d) \({x^2} + 8x + 12 = 0\).
Phương pháp giải - Xem chi tiết
Các bước giải phương trình:
+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).
+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.
Lời giải chi tiết
a) \({x^2} + 5x = 0\)
\(x\left( {x + 5} \right) = 0\)
\(x = 0\) hoặc \(x + 5 = 0\)
\(x = 0\) hoặc \(x = - 5\)
Vậy phương trình có hai nghiệm: \({x_1} = 0\); \(x = - 5\).
b) \({x^2} - 16 = 0\)
\(\left( {x - 4} \right)\left( {x + 4} \right) = 0\)
\(x - 4 = 0\) hoặc \(x + 4 = 0\)
\(x = 4\) hoặc \(x = - 4\)
Vậy phương trình có hai nghiệm: \(x = 4\); \(x = - 4\).
c) \({x^2} - 10x + 25 = 0\)
\({x^2} - 2.x.5 + {5^2} = 0\)
\({\left( {x - 5} \right)^2} = 0\)
\(x - 5 = 0\)
\(x = 5\)
Vậy phương trình đã cho có nghiệm \(x = 5\).
d) \({x^2} + 8x + 12 = 0\)
\({x^2} + 2x + 6x + 12 = 0\)
\(x\left( {x + 2} \right) + 6\left( {x + 2} \right) = 0\)
\(\left( {x + 2} \right)\left( {x + 6} \right) = 0\)
\(x + 2 = 0\) hoặc \(x + 6 = 0\)
\(x = - 2\) hoặc \(x = - 6\)
Vậy phương trình có hai nghiệm: \(x = - 2\); \(x = - 6\).
Bài 6.9 sách bài tập toán 9 Kết nối tri thức tập 2 yêu cầu giải bài toán về việc tìm số tiền mà mỗi bạn An và Bình có, dựa trên thông tin về tổng số tiền và mối quan hệ giữa số tiền của hai bạn.
An và Bình có tổng cộng 120 nghìn đồng. Nếu An cho Bình 20 nghìn đồng thì số tiền của Bình gấp đôi số tiền của An. Hỏi lúc đầu mỗi bạn có bao nhiêu tiền?
Để giải bài toán này, chúng ta sẽ sử dụng phương pháp lập hệ phương trình bậc nhất hai ẩn.
Ta có hệ phương trình:
x | y | |
---|---|---|
Phương trình 1 | 1 | 1 |
Phương trình 2 | -2 | 1 |
Giải hệ phương trình, ta được:
Vậy lúc đầu An có 80 nghìn đồng và Bình có 40 nghìn đồng.
Bài toán này là một ví dụ điển hình về việc ứng dụng hệ phương trình bậc nhất hai ẩn vào giải quyết các bài toán thực tế. Việc đặt ẩn và lập phương trình chính xác là yếu tố then chốt để giải quyết bài toán một cách hiệu quả. Học sinh cần nắm vững các bước giải hệ phương trình để có thể áp dụng vào các bài toán tương tự.
Ngoài ra, học sinh có thể tự đặt ra các bài toán tương tự với các số liệu khác nhau để rèn luyện kỹ năng giải toán. Việc thực hành thường xuyên sẽ giúp học sinh hiểu sâu hơn về kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 6.9 trang 10 sách bài tập toán 9 Kết nối tri thức tập 2. Chúc các em học tập tốt!
Lời giải trên chỉ mang tính chất tham khảo. Học sinh nên tự mình suy nghĩ và giải bài tập để hiểu rõ hơn về kiến thức.