Bài 5.32 trang 72 sách bài tập Toán 9 Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.32 trang 72, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho tam giác ABC vuông tại A, đường cao AH. Từ B và từ C kẻ hai đường thẳng tiếp xúc với đường tròn (A; AH) lần lượt tại D và E. Chứng minh rằng: a) Hai điểm D và E đối xứng với nhau qua A; b) DE tiếp xúc với đường tròn đường kính BC.
Đề bài
Cho tam giác ABC vuông tại A, đường cao AH. Từ B và từ C kẻ hai đường thẳng tiếp xúc với đường tròn (A; AH) lần lượt tại D và E. Chứng minh rằng:
a) Hai điểm D và E đối xứng với nhau qua A;
b) DE tiếp xúc với đường tròn đường kính BC.
Phương pháp giải - Xem chi tiết
a) + Chứng minh \(\widehat {DAH} = 2\widehat {BAH}\), \(\widehat {HAE} = 2\widehat {HAC}\), \(\widehat {BAH} + \widehat {HAC} = {90^o}\) suy ra \(\widehat {DAH} + \widehat {HAE} = {180^o}\)
Do đó, ba điểm D, A, E thẳng hàng.
+ Vì D, E thuộc (A; AH) nên \(AE = AD\). Do đó, D và E đối xứng với nhau qua A.
b) + Gọi O là trung điểm của BC.
+ Chứng minh A thuộc đường tròn tâm O, đường kính BC.
+ Chứng minh \(\widehat {HBA} = \widehat {HAC}\), \(\widehat {HAC} = \widehat {CAE}\) nên \(\widehat {HBA} = \widehat {CAE}\).
+ Chứng minh \(\widehat {{C_1}} = \widehat {{A_1}}\).
+ Chứng minh \(\widehat {{B_1}} + \widehat {{C_1}} = {90^o}\), suy ra \(\widehat {{A_2}} + \widehat {{A_1}} = {90^o}\) hay \(\widehat {OAE} = {90^o}\), suy ra \(DE \bot OA\) tại A, suy ra, DE tiếp xúc với đường tròn đường kính BC tại A.
Lời giải chi tiết
a) Vì \(BC \bot AH\) tại H nên BC là tiếp tuyến của (A), mà BD là tiếp tuyến của (A) nên AB là phân giác của góc DAH, suy ra \(\widehat {DAH} = 2\widehat {BAH} = 2\widehat {DAB}\).
Chứng minh tương tự ta có: \(\widehat {HAE} = 2\widehat {HAC} = 2\widehat {CAE}\).
Tam giác ABC vuông tại A nên \(\widehat {BAH} + \widehat {HAC} = {90^o}\).
Ta có: \(\widehat {DAH} + \widehat {HAE} = 2\widehat {BAH} + 2\widehat {HAC} \\= 2\left( {\widehat {BAH} + \widehat {HAC}} \right) = {2.90^o} = {180^o}\)
Do đó, ba điểm D, A, E thẳng hàng.
Vì D, E thuộc (A; AH) nên \(AE = AD\). Do đó, D và E đối xứng với nhau qua A.
b) Gọi O là trung điểm của BC.
Tam giác ABC vuông tại A có AO là đường trung tuyến nên \(AO = OB = OC\). Do đó, A thuộc đường tròn tâm O, đường kính BC.
Ta có:
\(\widehat {HBA} + \widehat {{C_1}} = \widehat {{C_1}} + \widehat {HAC}\left( { = {{90}^o}} \right)\) nên \(\widehat {HBA} = \widehat {HAC}\).
Mà \(\widehat {HAC} = \widehat {CAE}\) nên \(\widehat {HBA} = \widehat {CAE}\)
Vì \(AO = OC\) nên tam giác AOC cân tại O, suy ra \(\widehat {{C_1}} = \widehat {{A_1}}\)
Tam giác ABC vuông tại A nên \(\widehat {{B_1}} + \widehat {{C_1}} = {90^o}\), suy ra \(\widehat {{A_2}} + \widehat {{A_1}} = {90^o}\) hay \(\widehat {OAE} = {90^o}\).
Do đó, \(DE \bot OA\) tại A.
Do đó, DE tiếp xúc với đường tròn đường kính BC tại A.
Bài 5.32 trang 72 sách bài tập Toán 9 Kết nối tri thức tập 1 thuộc chương Hàm số bậc nhất và hàm số bậc hai. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Đề bài: (Đề bài cụ thể của bài 5.32 sẽ được trình bày ở đây. Ví dụ: Cho hàm số y = 2x + 3. Tìm giá trị của x khi y = 7.)
Lời giải:
Để hiểu rõ hơn về cách giải bài 5.32, chúng ta cùng xem xét một ví dụ minh họa:
Ví dụ: Cho hàm số y = -x + 5. Tìm giá trị của x khi y = 2.
Lời giải: Thay y = 2 vào hàm số y = -x + 5, ta có: 2 = -x + 5. Suy ra x = 3.
Ngoài ra, các em có thể tự giải các bài tập tương tự sau để củng cố kiến thức:
Để giải các bài tập về hàm số bậc nhất và hàm số bậc hai một cách hiệu quả, các em nên:
Bài 5.32 trang 72 sách bài tập Toán 9 Kết nối tri thức tập 1 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em sẽ tự tin hơn khi giải các bài tập tương tự.
Công thức | Mô tả |
---|---|
y = ax + b | Hàm số bậc nhất |
y = ax2 + bx + c | Hàm số bậc hai |
Δ = b2 - 4ac | Biệt thức của phương trình bậc hai |