Logo Header
  1. Môn Toán
  2. Giải bài 5.30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1

Giải bài 5.30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1

Giải bài 5.30 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1

Bài 5.30 trang 71 sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.30 trang 71, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho tam giác vuông ABC ((widehat A = {90^o})) có (widehat C = {30^o}) và AB=3cm. Đường phân giác của góc B cắt AC tại D. a) Chứng minh rằng đường tròn (D; DA) tiếp xúc với cạnh BC. b) Tính độ dài cung nằm trong góc BDC của đường tròn (D; DA) và diện tích hình quạt tròn tương ứng với cung ấy. c) Tính diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC).

Đề bài

Cho tam giác vuông ABC (\(\widehat A = {90^o}\)) có \(\widehat C = {30^o}\) và AB=3cm. Đường phân giác của góc B cắt AC tại D.

a) Chứng minh rằng đường tròn (D; DA) tiếp xúc với cạnh BC.

b) Tính độ dài cung nằm trong góc BDC của đường tròn (D; DA) và diện tích hình quạt tròn tương ứng với cung ấy.

c) Tính diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC).

Phương pháp giải - Xem chi tiếtGiải bài 5.30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1 1

a) + Qua D kẻ đường thẳng vuông góc với BC, cắt BC tại E.

+ Sử dụng tính chất tia phân giác của góc suy ra \(AD = DE\).

+ Do đó, đường tròn (D; DA) tiếp xúc với cạnh BC tại E.

b) + \(\widehat {ABC} = {90^o} - \widehat {BCA}\) nên \(\widehat {ABD} = \widehat {DBC} = \frac{1}{2}\widehat {ABC} = {30^o}\).

+ Tam giác ABD vuông tại A nên \(AD = AB.\tan \widehat {ABD}\).

+ \(\widehat {BDC} = {180^o} - \widehat {DBC} - \widehat {DCB}\) nên tính được số đo cung nằm trong góc BDC của đường tròn (D; DA).

+ Từ đó tính được độ dài cung nằm trong góc BDC của đường tròn (D; DA) và diện tích hình quạt tròn của cung nằm trong góc BDC của đường tròn (D; DA)

c) + Tam giác ABC vuông tại A nên \(AC = AB.\cot \widehat {ACB}\), từ đó tính được DC.

Diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC) là: \({S_{vk}} = \pi \left( {D{C^2} - D{A^2}} \right)\).

Lời giải chi tiết

Giải bài 5.30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1 2

a) Qua D kẻ đường thẳng vuông góc với BC, cắt BC tại E.

Vì BD là phân giác của góc ABC, AD vuông góc với AB tại A, DE vuông góc với BC tại E nên \(AD = DE\). Do đó, đường tròn (D; DA) tiếp xúc với cạnh BC tại E.

b) Tam giác ABC vuông tại A nên

\(\widehat {ABC} = {90^o} - \widehat {BCA} = {60^o}\).

Vì BA là tia phân giác của góc ABC nên

\(\widehat {ABD} = \widehat {DBC} = \frac{1}{2}\widehat {ABC} = {30^o}\).

Tam giác ABD vuông tại A nên

\(AD = AB.\tan \widehat {ABD} = 3.\tan {30^o} = \sqrt 3 \left( {cm} \right)\).

Tam giác BDC có:

\(\widehat {BDC} = {180^o} - \widehat {DBC} - \widehat {DCB} = {120^o}\).

Do đó, cung nằm trong góc BDC của đường tròn (D; DA) có số đo bằng \({120^o}\).

Độ dài cung nằm trong góc BDC của đường tròn (D; DA) là:

\(l = \frac{{120}}{{180}}.\pi .\sqrt 3 = \frac{{2\sqrt 3 \pi }}{3}\left( {cm} \right)\).

Diện tích hình quạt tròn của cung nằm trong góc BDC của đường tròn (D; DA) là:

\(S = \frac{{120}}{{360}}.\pi .{\left( {\sqrt 3 } \right)^2} = \pi \left( {c{m^2}} \right)\)

c) Tam giác ABC vuông tại A nên

\(AC = AB.\cot \widehat {ACB} = 3.\cot {30^o} = 3\sqrt 3 \left( {cm} \right)\).

Do đó, \(DC = AC - AD = 2\sqrt 3 \left( {cm} \right)\)

Diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC) là:

\({S_{vk}} = \pi \left( {D{C^2} - D{A^2}} \right) \\= \pi \left[ {{{\left( {2\sqrt 3 } \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}} \right] \\= 9\pi \left( {c{m^2}} \right)\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 5.30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1 đặc sắc thuộc chuyên mục toán 9 trên nền tảng học toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 5.30 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1: Tóm tắt lý thuyết và phương pháp

Trước khi đi vào giải chi tiết bài 5.30, chúng ta cùng ôn lại một số kiến thức cơ bản về hàm số bậc nhất và hàm số bậc hai. Hàm số bậc nhất có dạng y = ax + b (a ≠ 0), trong đó a là hệ số góc và b là tung độ gốc. Hàm số bậc hai có dạng y = ax² + bx + c (a ≠ 0), trong đó a, b, c là các hệ số. Việc hiểu rõ các tính chất của hàm số, đặc biệt là đồ thị hàm số, là rất quan trọng để giải quyết các bài toán liên quan.

Phân tích đề bài 5.30 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1

Đề bài 5.30 thường yêu cầu học sinh xác định hàm số, tìm các điểm thuộc đồ thị hàm số, hoặc giải các bài toán ứng dụng liên quan đến hàm số. Để giải bài tập này, cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, vận dụng các kiến thức đã học để xây dựng phương trình hoặc hệ phương trình phù hợp.

Lời giải chi tiết bài 5.30 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1

(Phần này sẽ chứa lời giải chi tiết cho bài 5.30, bao gồm các bước giải, giải thích rõ ràng và các ví dụ minh họa. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững phương pháp giải.)

Ví dụ minh họa và bài tập tương tự

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 5.30, chúng ta sẽ cùng xem xét một số ví dụ minh họa. Sau đó, chúng ta sẽ đưa ra một số bài tập tương tự để các em tự luyện tập và củng cố kiến thức.

Các dạng bài tập thường gặp liên quan đến bài 5.30

  • Dạng 1: Xác định hàm số khi biết các yếu tố của hàm số.
  • Dạng 2: Tìm các điểm thuộc đồ thị hàm số.
  • Dạng 3: Giải các bài toán ứng dụng liên quan đến hàm số.

Mẹo giải nhanh bài 5.30 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1

Để giải nhanh bài 5.30, các em có thể áp dụng một số mẹo sau:

  1. Đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán.
  2. Vận dụng các kiến thức đã học để xây dựng phương trình hoặc hệ phương trình phù hợp.
  3. Kiểm tra lại kết quả sau khi giải xong.

Lưu ý khi giải bài 5.30 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1

Khi giải bài 5.30, các em cần lưu ý một số điểm sau:

  • Nắm vững các kiến thức cơ bản về hàm số bậc nhất và hàm số bậc hai.
  • Hiểu rõ các tính chất của hàm số, đặc biệt là đồ thị hàm số.
  • Luyện tập thường xuyên để củng cố kiến thức và kỹ năng giải bài tập.

Tổng kết

Bài 5.30 trang 71 sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng, giúp các em học sinh củng cố kiến thức về hàm số. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em sẽ hiểu rõ phương pháp giải và tự tin làm bài tập. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 9