Bài 6.18 trang 13 Sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và ứng dụng thực tế để giải quyết vấn đề.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.18 trang 13 Sách bài tập Toán 9 - Kết nối tri thức tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Tìm hai số u và v, biết: a) (u + v = 17,uv = 72); b) ({u^2} + {v^2} = 73,uv = 24).
Đề bài
Tìm hai số u và v, biết:
a) \(u + v = 17,uv = 72\);
b) \({u^2} + {v^2} = 73,uv = 24\).
Phương pháp giải - Xem chi tiết
+ Hai số cần tìm là hai nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)), với S là tổng của hai số, P là tích của hai số.
+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).
Lời giải chi tiết
a) Hai số cần tìm là hai nghiệm của phương trình \({x^2} - 17x + 72 = 0\)
Ta có: \(\Delta = {\left( { - 17} \right)^2} - 4.1.72 = 1 > 0,\sqrt \Delta = 1\)
Suy ra phương trình có hai nghiệm: \({x_1} = \frac{{17 + 1}}{2} = 9;{x_2} = \frac{{17 - 1}}{2} = 8\).
Vậy \(\left( {u;v} \right) = \left( {8;9} \right)\) hoặc \(\left( {u;v} \right) = \left( {8;9} \right)\).
b) Ta có: \({u^2} + {v^2} = 73\) nên \({u^2} + 2uv + {v^2} - 2uv = 73\), suy ra \({\left( {u + v} \right)^2} - 2.24 = 73\), suy ra \({\left( {u + v} \right)^2} = 121\). Do đó, \(u + v = 11\) hoặc \(u + v = - 11\).
TH1: \(u + v = 11\), \(uv = 24\)
Hai số cần tìm là hai nghiệm của phương trình \({x^2} - 11x + 24 = 0\).
Ta có: \(\Delta = {\left( { - 11} \right)^2} - 4.1.24 = 25\) nên phương trình có hai nghiệm: \({x_1} = \frac{{11 + \sqrt {25} }}{2} = 8;{x_2} = \frac{{11 - \sqrt {25} }}{2} = 3\)
TH2: \(u + v = - 11\), \(uv = 24\)
Hai số cần tìm là hai nghiệm của phương trình \({x^2} + 11x + 24 = 0\).
Vì \(\Delta = {11^2} - 4.1.24 = 25\) nên phương trình có hai nghiệm: \({x_1} = \frac{{ - 11 + \sqrt {25} }}{2} = - 3;{x_2} = \frac{{ - 11 - \sqrt {25} }}{2} = - 8\)
Vậy \(\left( {u;v} \right) \in \left\{ {\left( {8;3} \right);\left( {3;8} \right);\left( { - 8; - 3} \right);\left( { - 3; - 8} \right)} \right\}\).
Bài 6.18 thuộc chương Hàm số bậc nhất, yêu cầu học sinh áp dụng kiến thức về việc xác định hàm số, tìm giao điểm của đồ thị hàm số và giải quyết các bài toán thực tế liên quan đến hàm số.
Bài toán thường yêu cầu học sinh:
(Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Ví dụ:)
Ví dụ: Giả sử bài toán yêu cầu tìm giá trị của x sao cho y = 2x + 1 và y = -x + 4. Ta giải hệ phương trình:
y = 2x + 1 | y = -x + 4 | |
---|---|---|
Giải hệ phương trình: | 2x + 1 | -x + 4 |
Từ phương trình (1) và (2) ta có: | 2x + 1 = -x + 4 | |
Giải phương trình: | 3x = 3 | |
Suy ra: | x = 1 | |
Thay x = 1 vào phương trình (1): | y = 2(1) + 1 = 3 |
Vậy giao điểm của hai đường thẳng là (1; 3).
Ngoài bài 6.18, còn rất nhiều bài tập tương tự yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất. Để giải quyết các bài tập này, cần:
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Giaitoan.edu.vn sẽ cung cấp thêm nhiều bài tập và lời giải chi tiết trong các bài viết tiếp theo.
Bài 6.18 trang 13 Sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải bài tập này và các bài tập tương tự.