Logo Header
  1. Môn Toán
  2. Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

Giải bài 14 trang 73 Sách bài tập Toán 9 - Kết nối tri thức tập 2

Bài 14 trang 73 Sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 14 trang 73 Sách bài tập Toán 9 - Kết nối tri thức tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Cho tam giác ABC nội tiếp đường tròn (O), vẽ (AX bot BC) và cắt nhau tại điểm D. Cho điểm H trên đoạn thẳng AD sao cho (DH = DX). Cho BH cắt AC tại E và CH cắt AB tại F. a) Chứng minh rằng H là trực tâm của tam giác ABC. b) Chứng minh rằng H là tâm của đường tròn nội tiếp tam giác DEF.

Đề bài

Cho tam giác ABC nội tiếp đường tròn (O), vẽ \(AX \bot BC\) và cắt nhau tại điểm D. Cho điểm H trên đoạn thẳng AD sao cho \(DH = DX\). Cho BH cắt AC tại E và CH cắt AB tại F.

a) Chứng minh rằng H là trực tâm của tam giác ABC.

b) Chứng minh rằng H là tâm của đường tròn nội tiếp tam giác DEF.

Phương pháp giải - Xem chi tiếtGiải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2 1

a) + Chứng minh \(\Delta BDH = \Delta BDX\left( {c.g.c} \right)\)nên \(\widehat {HBD} = \widehat {DBX}\).

+ Mà \(\widehat {CBX} = \widehat {CAX}\) nên \(\widehat {HBD} = \widehat {CAX} = {90^o} - \widehat {ACB}\).

+ Chứng minh \(\widehat {BEC} = {90^o}\). Do đó, \(BE \bot AC\).

+ Chứng minh tương tự ta có: \(CF \bot AB\).

+ Do đó, H là trực tâm của tam giác ABC.

b) + Chứng minh tứ giác HDBF nội tiếp đường tròn đường kính BH, suy ra \(\widehat {HDF} = \widehat {HBF}\).

+ Tương tự ta có: \(\widehat {HDE} = \widehat {HCE}\). Mà \(\widehat {HBF} = {90^o} - \widehat {BAC} = \widehat {HCE}\) nên \(\widehat {HDF} = \widehat {HBF} = \widehat {HCE} = \widehat {HDE}\), suy ra H nằm trên đường phân giác của góc EDF của tam giác DEF.

+ Tương tự ta có: H nằm trên các đường phân giác của các góc DEF, DFE. Do đó, H là tâm đường tròn nội tiếp tam giác DEF.

Lời giải chi tiết

Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2 2

a) Tam giác BDH và tam giác BDX có: BD là cạnh chung, \(\widehat {BDH} = \widehat {BDX} = {90^o},DH = DX\) nên \(\Delta BDH = \Delta BDX\left( {c.g.c} \right)\), suy ra \(\widehat {HBD} = \widehat {DBX}\).

Mặt khác \(\widehat {CBX} = \widehat {CAX}\) (hai góc nội tiếp (O) cùng chắn cung CX). Do đó, \(\widehat {HBD} = \widehat {CAX} = {90^o} - \widehat {ACB}\).

Tam giác BEC có: \(\widehat {BEC} = {180^o} - \widehat {EBC} - \widehat {ACB} = {180^o} - {90^o} + \widehat {ACB} - \widehat {ACB} = {90^o}\). Do đó, \(BE \bot AC\).

Chứng minh tương tự ta có: \(CF \bot AB\). Do đó, H là trực tâm của tam giác ABC.

b) Do \(\widehat {HDB} = \widehat {HFB} = {90^o}\) nên tứ giác HDBF nội tiếp đường tròn đường kính BH.

Do đó, \(\widehat {HDF} = \widehat {HBF}\) (hai góc nội tiếp cùng chắn cung HF của đường tròn đường kính BH).

Tương tự ta có: \(\widehat {HDE} = \widehat {HCE}\).

Mặt khác, \(\widehat {HBF} = {90^o} - \widehat {BAC} = \widehat {HCE}\).

Do đó, \(\widehat {HDF} = \widehat {HBF} = \widehat {HCE} = \widehat {HDE}\). Vậy H nằm trên đường phân giác của góc EDF của tam giác DEF.

Tương tự, H nằm trên các đường phân giác của các góc DEF, DFE. Do đó, H là tâm đường tròn nội tiếp tam giác DEF.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2 đặc sắc thuộc chuyên mục giải sgk toán 9 trên nền tảng môn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 14 trang 73 Sách bài tập Toán 9 - Kết nối tri thức tập 2: Tổng quan

Bài 14 trang 73 Sách bài tập Toán 9 - Kết nối tri thức tập 2 thuộc chương trình học về hàm số bậc nhất và hàm số bậc hai. Bài tập này thường yêu cầu học sinh xác định hệ số góc, đường thẳng song song, vuông góc, và ứng dụng vào giải quyết các bài toán liên quan đến thực tế.

Nội dung chi tiết bài 14 trang 73

Bài 14 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số góc của đường thẳng. Học sinh cần nắm vững công thức y = ax + b, trong đó a là hệ số góc.
  • Dạng 2: Tìm điều kiện để hai đường thẳng song song hoặc vuông góc. Hai đường thẳng song song khi và chỉ khi hệ số góc của chúng bằng nhau. Hai đường thẳng vuông góc khi và chỉ khi tích hệ số góc của chúng bằng -1.
  • Dạng 3: Viết phương trình đường thẳng. Sử dụng các thông tin đã cho (điểm đi qua, hệ số góc,...) để viết phương trình đường thẳng.
  • Dạng 4: Ứng dụng vào bài toán thực tế. Bài toán có thể liên quan đến việc xác định mối quan hệ giữa các đại lượng, dự đoán giá trị, hoặc giải quyết các vấn đề thực tế khác.

Lời giải chi tiết bài 14 trang 73 (Ví dụ)

Bài 14: Cho hai đường thẳng d1: y = 2x - 1 và d2: y = -x + 3. Tìm giao điểm của hai đường thẳng này.

Lời giải:

  1. Để tìm giao điểm của hai đường thẳng, ta giải hệ phương trình:
  2. y = 2x - 1

    y = -x + 3

  3. Thay y = 2x - 1 vào phương trình thứ hai, ta được: 2x - 1 = -x + 3
  4. Giải phương trình trên, ta được: 3x = 4 => x = 4/3
  5. Thay x = 4/3 vào phương trình y = 2x - 1, ta được: y = 2*(4/3) - 1 = 8/3 - 1 = 5/3
  6. Vậy giao điểm của hai đường thẳng là (4/3; 5/3)

Mẹo giải bài tập hàm số bậc nhất và bậc hai

  • Nắm vững các công thức và định lý liên quan đến hàm số.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Vẽ đồ thị hàm số để hình dung rõ hơn về mối quan hệ giữa các đại lượng.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng trên YouTube
  • Các diễn đàn học toán

Kết luận

Bài 14 trang 73 Sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số bậc nhất và bậc hai. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 9