Bài 6.39 trang 21 sách bài tập toán 9 thuộc chương trình Kết nối tri thức tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán thực tế liên quan đến hàm số bậc nhất. Bài tập này đòi hỏi học sinh phải nắm vững kiến thức về cách xác định hệ số góc và tung độ gốc của hàm số, cũng như cách áp dụng các tính chất của hàm số để giải quyết vấn đề.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.39 trang 21 sách bài tập toán 9 - Kết nối tri thức tập 2, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong một giải cờ vua thi đấu vòng tròn tính điểm, mỗi người chơi đấu với một người chơi khác đúng một lần. Công thức (N = frac{{{x^2} - x}}{2}) dùng để tính số ván cờ N phải chơi theo thể thức thi đấu vòng tròn một lượt khi có x người chơi. a) Nếu một giải đấu có 10 người chơi thì có tất cả bao nhiêu ván cờ? b) Trong một giải cờ vua thi đấu vòng tròn có tất cả 36 ván cờ, hỏi có bao nhiêu người đã tham gia giải đấu?
Đề bài
Trong một giải cờ vua thi đấu vòng tròn tính điểm, mỗi người chơi đấu với một người chơi khác đúng một lần. Công thức \(N = \frac{{{x^2} - x}}{2}\) dùng để tính số ván cờ N phải chơi theo thể thức thi đấu vòng tròn một lượt khi có x người chơi.
a) Nếu một giải đấu có 10 người chơi thì có tất cả bao nhiêu ván cờ?
b) Trong một giải cờ vua thi đấu vòng tròn có tất cả 36 ván cờ, hỏi có bao nhiêu người đã tham gia giải đấu?
Phương pháp giải - Xem chi tiết
a) Thay \(x = 10\) vào \(N = \frac{{{x^2} - x}}{2}\) ta tìm được N.
b) Thay \(N = 36\) vào \(N = \frac{{{x^2} - x}}{2}\), ta tìm được phương trình bậc hai ẩn x, giải phương trình, kết hợp với điều kiện \(x > 0\), ta tìm được số người tham gia giải đấu.
Lời giải chi tiết
a) Có 10 người chơi nên số ván cờ là: \(N = \frac{{{{10}^2} - 10}}{2} = 45\) (ván cờ). Vậy có 45 ván cờ trong giải đấu đó.
b) Có 36 ván cờ nên ta có \(\frac{{{x^2} - x}}{2} = 36\), suy ra \({x^2} - x - 72 = 0\).
Vì \(\Delta = {\left( { - 1} \right)^2} - 4.1.\left( { - 72} \right) = 289\) nên phương trình có hai nghiệm \({x_1} = \frac{{1 + \sqrt {289} }}{2} = 9\) (thỏa mãn \(x > 0\)), \({x_2} = \frac{{1 - \sqrt {289} }}{2} = - 8\) (loại do \(x > 0\)).
Vậy có 9 người tham gia giải đấu thì có 36 ván cờ.
Bài 6.39 yêu cầu chúng ta giải một bài toán thực tế liên quan đến hàm số bậc nhất. Để giải bài toán này, chúng ta cần thực hiện các bước sau:
Giả sử đề bài cho: Một người đi xe đạp với vận tốc không đổi là 15 km/h. Hỏi sau bao lâu người đó đi được quãng đường 30 km?
Giải:
Kết luận: Sau 2 giờ, người đó đi được quãng đường 30 km.
Ngoài bài toán trên, còn rất nhiều dạng bài tập tương tự liên quan đến hàm số bậc nhất. Một số dạng bài tập phổ biến bao gồm:
Để giải các bài tập này, chúng ta cần nắm vững các kiến thức về hàm số bậc nhất, bao gồm:
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Giaitoan.edu.vn sẽ tiếp tục cung cấp các lời giải chi tiết và dễ hiểu cho các bài tập toán 9 khác, giúp các em học tập hiệu quả.
Lưu ý: Bài giải trên chỉ mang tính chất minh họa. Các em học sinh cần tự giải bài toán theo hướng dẫn và kiểm tra lại kết quả của mình.
Công thức | Mô tả |
---|---|
y = mx + b | Phương trình hàm số bậc nhất |
m | Hệ số góc |
b | Tung độ gốc |
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ cách giải bài 6.39 trang 21 sách bài tập toán 9 - Kết nối tri thức tập 2 và tự tin hơn trong việc học toán 9.