Bài 4.6 trang 45 sách bài tập toán 9 thuộc chương trình Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình bậc hai. Bài tập này thường yêu cầu học sinh áp dụng các công thức và phương pháp đã học để tìm ra nghiệm của phương trình.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.6 trang 45 sách bài tập toán 9 - Kết nối tri thức tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Một tam giác vuông có hai cạnh góc vuông đo được 5cm, 12cm. Hỏi sin góc nhọn nhỏ nhất của tam giác đó bằng bao nhiêu?
Đề bài
Một tam giác vuông có hai cạnh góc vuông đo được 5cm, 12cm. Hỏi sin góc nhọn nhỏ nhất của tam giác đó bằng bao nhiêu?
Phương pháp giải - Xem chi tiết
+ Giả sử tam giác ABC vuông tại A có \(AB = 5cm,AC = 12cm\) và BC là cạnh huyền. Do đó, AB là cạnh ngắn nhất của tam giác ABC.
+ Áp dụng định lý Pythagore ta có vào tam giác ABC tính được BC.
+ \(\sin C = \frac{{AB}}{{BC}}\)
Lời giải chi tiết
Giả sử tam giác ABC vuông tại A có \(AB = 5cm,AC = 12cm\) và BC là cạnh huyền. Do đó, AB là cạnh ngắn nhất của tam giác ABC.
Theo định lý Pythagore ta có: \(B{C^2} = A{B^2} + A{C^2} = {5^2} + {12^2} = 169\) nên \(BC = 13cm\)
Do đó, \(\sin C = \frac{{AB}}{{BC}} = \frac{5}{{13}}\).
Bài 4.6 trang 45 sách bài tập toán 9 - Kết nối tri thức tập 1 yêu cầu giải các phương trình bậc hai. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về phương trình bậc hai, bao gồm:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phương trình trong bài 4.6:
Ta có: a = 2, b = -5, c = 2
Δ = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9 > 0
Phương trình có hai nghiệm phân biệt:
x1 = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2
x2 = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 1/2
Vậy nghiệm của phương trình là x1 = 2 và x2 = 1/2
Ta có: a = 1, b = -4, c = 4
Δ = (-4)2 - 4 * 1 * 4 = 16 - 16 = 0
Phương trình có nghiệm kép:
x1 = x2 = -(-4) / (2 * 1) = 4 / 2 = 2
Vậy nghiệm của phương trình là x = 2
Ta có: a = 3, b = 2, c = 1
Δ = (2)2 - 4 * 3 * 1 = 4 - 12 = -8 < 0
Phương trình vô nghiệm
Để rèn luyện thêm kỹ năng giải phương trình bậc hai, các em có thể tham khảo các bài tập tương tự sau:
Bài 4.6 trang 45 sách bài tập toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh nắm vững kiến thức về phương trình bậc hai. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ tự tin giải bài tập này và các bài tập tương tự một cách hiệu quả.