Bài 2.22 trang 29 sách bài tập Toán 9 Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.22 trang 29, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giải các bất phương trình sau: a) (left( {3x + 1} right)left( {x + 2} right) > xleft( {3x - 2} right) + 1); b) (2xleft( {x + 1} right) + 3 < xleft( {2x + 5} right) - 7).
Đề bài
Giải các bất phương trình sau:
a) \(\left( {3x + 1} \right)\left( {x + 2} \right) > x\left( {3x - 2} \right) + 1\);
b) \(2x\left( {x + 1} \right) + 3 < x\left( {2x + 5} \right) - 7\).
Phương pháp giải - Xem chi tiết
Đưa bất phương trình đã cho về dạng bất phương trình bậc nhất một ẩn và giải bất phương trình đó.
Lời giải chi tiết
a) \(\left( {3x + 1} \right)\left( {x + 2} \right) > x\left( {3x - 2} \right) + 1\)
\(3{x^2} + 7x + 2 > 3{x^2} - 2x + 1\)
\(3{x^2} - 3{x^2} + 7x + 2x > 1 - 2\)
\(9x > - 1\)
\(x > \frac{{ - 1}}{9}\)
Vậy bất phương trình đã cho có nghiệm là \(x > \frac{{ - 1}}{9}\).
b) \(2x\left( {x + 1} \right) + 3 < x\left( {2x + 5} \right) - 7\)
\(2{x^2} + 2x + 3 < 2{x^2} + 5x - 7\)
\(2{x^2} - 2{x^2} + 2x - 5x < - 7 - 3\)
\( - 3x < - 10\)
\(x > \frac{{10}}{3}\)
Vậy bất phương trình đã cho có nghiệm là \(x > \frac{{10}}{3}\).
Bài 2.22 trang 29 sách bài tập Toán 9 Kết nối tri thức tập 1 thuộc chương Hàm số bậc nhất và hàm số bậc hai. Bài toán này thường yêu cầu học sinh xác định hệ số góc, điểm đi qua, hoặc viết phương trình đường thẳng khi biết các yếu tố liên quan. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về hàm số bậc nhất và hàm số bậc hai.
Trước khi đi vào giải chi tiết, chúng ta cần đọc kỹ đề bài và xác định yêu cầu của bài toán. Thông thường, bài toán sẽ cung cấp một số thông tin về đường thẳng hoặc hàm số, và yêu cầu chúng ta tìm các yếu tố còn thiếu hoặc chứng minh một điều gì đó.
(Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và ví dụ minh họa. Ví dụ:)
Ví dụ: Giả sử đề bài yêu cầu tìm phương trình đường thẳng đi qua hai điểm A(1; 2) và B(3; 4).
Ngoài bài 2.22, còn rất nhiều bài tập tương tự trong sách bài tập Toán 9 Kết nối tri thức tập 1. Để giải quyết các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để củng cố kiến thức, các em học sinh có thể tự giải các bài tập sau:
Bài 2.22 trang 29 sách bài tập Toán 9 Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán về hàm số bậc nhất và hàm số bậc hai. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.