Bài 6.22 trang 14 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.22 trang 14, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Chứng tỏ rằng nếu phương trình bậc hai (a{x^2} + bx + c = 0) có hai nghiệm là ({x_1}), ({x_2}) thì đa thức (a{x^2} + bx + c) được phân tích được thành nhân tử như sau: (a{x^2} + bx + c = aleft( {x - {x_1}} right)left( {x - {x_2}} right)). Áp dụng: Phân tích các đa thức sau thành nhân tử: (2{x^2} - 9x + 7); (4{x^2} + left( {sqrt 2 - 3} right)x - 7 + sqrt 2 ).
Đề bài
Chứng tỏ rằng nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm là \({x_1}\), \({x_2}\) thì đa thức \(a{x^2} + bx + c\) được phân tích được thành nhân tử như sau: \(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\).
Áp dụng: Phân tích các đa thức sau thành nhân tử: \(2{x^2} - 9x + 7\); \(4{x^2} + \left( {\sqrt 2 - 3} \right)x - 7 + \sqrt 2 \).
Phương pháp giải - Xem chi tiết
- Chứng minh:
+ Viết định lí Viète để tính tổng và tích các nghiệm: \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\)
+ Biến đổi \(a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = a{x^2} - ax\left( {{x_1} + {x_2}} \right) + a{x_1}{x_2}\)
+ Thay \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\) vào đa thức \(a{x^2} - ax\left( {{x_1} + {x_2}} \right) + a{x_1}{x_2}\) ta được điều phải chứng minh.
Áp dụng: + Tìm nghiệm của phương trình \(a{x^2} + bx + c = 0\)
+ Phân tích đa thức dưới dạng:
\(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\)
Lời giải chi tiết
Với \({x_1}\) và \({x_2}\) là hai nghiệm của phương trình bậc hai \(a{x^2} + bx + c = 0\), theo định lí Viète ta có: \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\). Do đó:
\(a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) \\= a{x^2} - a\left( {{x_1} + {x_2}} \right)x + a{x_1}{x_2} \\= a{x^2} - a.\frac{{ - b}}{a}.x + a.\frac{c}{a} \\= a{x^2} + bx + c.\)
Đó là điều phải chứng minh.
Áp dụng:
a) Vì \(2 - 9 + 7 = 0\) nên phương trình \(2{x^2} - 9x + 7 = 0\) có hai nghiệm \({x_1} = 1;{x_2} = \frac{7}{2}\)
nên \(2{x^2} - 9x + 7 = 2\left( {x - 1} \right)\left( {x - \frac{7}{2}} \right)\)
b) Vì \(4 - \left( {\sqrt 2 - 3} \right) - 7 + \sqrt 2 = 0\) nên phương trình \(4{x^2} + \left( {\sqrt 2 - 3} \right)x - 7 + \sqrt 2 = 0\) có hai nghiệm \({x_1} = - 1;{x_2} = \frac{{7 - \sqrt 2 }}{4}\)
nên \(4{x^2} + \left( {\sqrt 2 - 3} \right)x - 7 + \sqrt 2\) \( = 4\left( {x + 1} \right)\left( {x + \frac{{\sqrt 2 - 7}}{4}} \right).\)
Bài 6.22 thuộc chương trình Toán 9, tập trung vào việc ứng dụng kiến thức về hàm số bậc nhất và hàm số bậc hai vào giải quyết các bài toán thực tế. Để giải bài tập này hiệu quả, học sinh cần nắm vững các khái niệm cơ bản sau:
Đề bài: (Nội dung đề bài cụ thể sẽ được chèn vào đây - ví dụ: Một người đi xe máy từ A đến B với vận tốc trung bình 40km/h. Nếu vận tốc tăng thêm 5km/h thì thời gian đi từ A đến B giảm đi 18 phút. Tính quãng đường AB.)
Lời giải:
Ngoài bài 6.22, còn rất nhiều bài tập tương tự yêu cầu học sinh vận dụng kiến thức về hàm số để giải quyết các bài toán thực tế. Một số dạng bài tập thường gặp:
Để giải các bài tập này, học sinh cần:
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số, học sinh nên luyện tập thêm các bài tập khác trong sách bài tập và các tài liệu tham khảo. Giaitoan.edu.vn cung cấp đầy đủ các bài giải chi tiết và dễ hiểu, giúp các em học sinh học tập hiệu quả.
Bài 6.22 trang 14 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán ứng dụng hàm số. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.