Bài 2.5 trang 23 sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và ứng dụng thực tế của nó.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.5 trang 23, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Giải các phương trình sau: a) (frac{3}{{x + 2}} + frac{x}{{{x^2} - 2x + 4}} = frac{{4{x^2}}}{{{x^3} + 8}}); b) (frac{3}{{2x + 1}} + frac{7}{{3x + 2}} = frac{{21x + 10}}{{left( {2x + 1} right)left( {3x + 2} right)}}).
Đề bài
Giải các phương trình sau:
a) \(\frac{3}{{x + 2}} + \frac{x}{{{x^2} - 2x + 4}} = \frac{{4{x^2}}}{{{x^3} + 8}}\);
b) \(\frac{3}{{2x + 1}} + \frac{7}{{3x + 2}} = \frac{{21x + 10}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\).
Phương pháp giải - Xem chi tiết
Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:
Bước 1. Tìm điều kiện xác định của phương trình.
Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.
Bước 3. Giải phương trình vừa tìm được.
Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.
Lời giải chi tiết
a) ĐKXĐ: \(x \ne - 2\).
Quy đồng mẫu hai vế của phương trình, ta được: \(\frac{{3\left( {{x^2} - 2x + 4} \right) + x\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)}} = \frac{{4{x^2}}}{{\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)}}\)
Suy ra: \(3\left( {{x^2} - 2x + 4} \right) + x\left( {x + 2} \right) = 4{x^2}\)
\(3{x^2} - 6x + 12 + {x^2} + 2x - 4{x^2} = 0\)
\( - 4x = - 12\)
\(x = 3\)
Giá trị \(x = 3\) thỏa mãn ĐKXĐ.
Vậy phương trình đã cho có nghiệm \(x = 3\).
b) ĐKXĐ: \(x \ne - \frac{1}{2};x \ne \frac{{ - 2}}{3}\).
Quy đồng mẫu hai vế của phương trình, ta được: \(\frac{{3\left( {3x + 2} \right) + 7\left( {2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} = \frac{{21x + 10}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\)
Suy ra: \(3\left( {3x + 2} \right) + 7\left( {2x + 1} \right) = 21x + 10\)
\(9x + 6 + 14x + 7 - 21x - 10 = 0\)
\(2x + 3 = 0\)
\(x = \frac{{ - 3}}{2}\)
Giá trị \(x = \frac{{ - 3}}{2}\) thỏa mãn ĐKXĐ.
Vậy phương trình đã cho có nghiệm \(x = \frac{{ - 3}}{2}\).
Bài 2.5 trang 23 sách bài tập Toán 9 - Kết nối tri thức tập 1 thuộc chương Hàm số bậc nhất. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Phương pháp giải bài tập thường bao gồm:
Đề bài: (Nội dung đề bài sẽ được chèn vào đây - ví dụ: Một người đi xe đạp với vận tốc 15km/h. Hỏi sau 2 giờ người đó đi được bao nhiêu km?)
Giải:
Gọi x là thời gian đi (giờ) và y là quãng đường đi được (km). Ta có hàm số biểu diễn mối quan hệ giữa thời gian và quãng đường là y = 15x.
Khi x = 2 giờ, ta có y = 15 * 2 = 30 km.
Vậy sau 2 giờ người đó đi được 30 km.
Ngoài bài 2.5, sách bài tập Toán 9 - Kết nối tri thức tập 1 còn nhiều bài tập tương tự về hàm số bậc nhất. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập này, học sinh cần luyện tập thường xuyên và nắm vững các kiến thức cơ bản về hàm số bậc nhất.
Hàm số bậc nhất có rất nhiều ứng dụng trong thực tế, ví dụ:
Việc hiểu rõ ứng dụng của hàm số bậc nhất giúp học sinh thấy được tính thực tế và hữu ích của môn Toán.
Để củng cố kiến thức, các em học sinh có thể tự giải các bài tập sau:
Bài 2.5 trang 23 sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó. Hy vọng với lời giải chi tiết và các kiến thức bổ sung trên, các em học sinh sẽ học tập tốt môn Toán 9.