Bài 6.27 trang 17 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.27 trang 17, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Hai chiếc máy bay khởi hành đồng thời từ một sân bay, một chiếc bay theo hướng bắc và chiếc kia bay theo hướng đông (xem hình bên). Chiếc máy bay đi về hướng bắc đang bay nhanh hơn 50 dặm một giờ so với chiếc máy bay đi về hướng đông. Sau 3 giờ, hai máy bay cách nhau 2 440 dặm. Tìm vận tốc của mỗi máy bay.
Đề bài
Hai chiếc máy bay khởi hành đồng thời từ một sân bay, một chiếc bay theo hướng bắc và chiếc kia bay theo hướng đông (xem hình bên). Chiếc máy bay đi về hướng bắc đang bay nhanh hơn 50 dặm một giờ so với chiếc máy bay đi về hướng đông. Sau 3 giờ, hai máy bay cách nhau 2 440 dặm. Tìm vận tốc của mỗi máy bay.
Phương pháp giải - Xem chi tiết
Các bước giải một bài toán bằng cách lập phương trình:
Bước 1. Lập phương trình:
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2. Giải phương trình.
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
Lời giải chi tiết
Gọi vận tốc của máy bay đi về hướng đông là x (dặm/ giờ). Điều kiện \(x > 0\).
Vận tốc của máy bay đi về hướng bắc là \(x + 50\) (dặm/ giờ).
Sau 3 giờ, hai máy bay cách nhau 2 440 dặm nên ta có phương trình:
\({\left[ {3\left( {x + 50} \right)} \right]^2} + {\left( {3x} \right)^2} = {2440^2}\)
\(18{x^2} + 900x - 5\;931\;100 = 0\)
\(9{x^2} + 450x - 2\;965\;550 = 0\)
Vì \(\Delta ' = {225^2} - 9.\left( { - 2\;965\;550} \right) = 26\;740\;575\) nên phương trình có hai nghiệm \({x_1} = \frac{{ - 225 + \sqrt {26\;740\;575} }}{9}\) (thỏa mãn) và \({x_2} = \frac{{ - 225 - \sqrt {26\;740\;575} }}{9}\) (không thỏa mãn).
Vậy vận tốc của máy bay đi về hướng đông là \(\frac{{ - 225 + \sqrt {26\;740\;575} }}{9}\)(dặm/ giờ) và vận tốc của máy bay đi về hướng bắc là \(\frac{{225 + \sqrt {26\;740\;575} }}{9}\)(dặm/ giờ).
Bài 6.27 thuộc chương trình Toán 9, tập trung vào việc ứng dụng kiến thức về hàm số bậc nhất và hàm số bậc hai vào giải quyết các bài toán thực tế. Để giải bài tập này hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như:
Đề bài: (Nội dung đề bài sẽ được chèn vào đây - ví dụ: Một người đi xe máy từ A đến B với vận tốc 40km/h. Sau khi đi được 30 phút, người đó tăng vận tốc lên 50km/h và đến B muộn hơn 10 phút so với dự kiến. Tính quãng đường AB.)
Lời giải:
Ngoài bài 6.27, còn rất nhiều bài tập tương tự yêu cầu học sinh vận dụng kiến thức về hàm số để giải quyết các bài toán thực tế. Một số dạng bài tập thường gặp:
Để giải các bài tập này, học sinh cần:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, học sinh có thể tham khảo thêm các bài tập sau:
Bài 6.27 trang 17 Sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán ứng dụng hàm số. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.