Logo Header
  1. Môn Toán
  2. Giải bài 5.31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1

Giải bài 5.31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1

Giải bài 5.31 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1

Bài 5.31 trang 71 sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.31 trang 71, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Từ điểm P nằm ngoài đường tròn (O), kẻ hai tiếp tuyến PA và PB đến đường tròn (A và B là hai tiếp điểm). a) Chứng minh rằng (PO bot AB). b) Gọi C là điểm đối xứng với A qua O. Chứng minh rằng BC//PO. c) Tính độ dài các cạnh của tam giác PAB, biết OA=3cm và OP=5cm.

Đề bài

Từ điểm P nằm ngoài đường tròn (O), kẻ hai tiếp tuyến PA và PB đến đường tròn (A và B là hai tiếp điểm).

a) Chứng minh rằng \(PO \bot AB\).

b) Gọi C là điểm đối xứng với A qua O. Chứng minh rằng BC//PO.

c) Tính độ dài các cạnh của tam giác PAB, biết OA=3cm và OP=5cm.

Phương pháp giải - Xem chi tiếtGiải bài 5.31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1 1

a) + Chứng minh \(PA = PB\) và PO là tia phân giác của góc APB.

+ Chứng minh tam giác PAB cân tại P, suy ra PO là đường trung trực của tam giác AP nên \(PO \bot AB\).

b) + Chứng minh C thuộc (O).

+ Chứng minh tam giác ABC vuông tại B. Do đó, \(BA \bot BC\). Mà \(PO \bot AB\)(cmt) nên BC//PO.

c) + Chứng minh \(PA \bot OA\).

+ Áp dụng định lí Pythagore vào tam giác OAP vuông tại tính được PA, suy ra, \(PA = PB = 4cm\).

+ Gọi H là giao điểm của PO và AB. Theo a ta có: \(AH \bot OP\) và \(AB = 2AH\).

+ \(AH.OP = OA.PA\left( { = 2{S_{\Delta AOP}}} \right)\) nên \(AH = \frac{{OA.AP}}{{OP}}\) nên tính được AB.

Lời giải chi tiết

Giải bài 5.31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1 2

a) Vì PA và PB là hai tiếp tuyến cắt nhau tại P của (O) nên \(PA = PB\), PO là tia phân giác của góc APB.

Vì \(PA = PB\) nên tam giác PAB cân tại P. Do đó, PO là đường phân giác đồng thời là đường trung trực của tam giác ABP. Suy ra: \(PO \bot AB\).

b) Vì C là điểm đối xứng với A qua O nên \(OA = OC\). Do đó, C thuộc (O).

Vì \(OB = OC = OA = \frac{1}{2}AC\) nên tam giác BAC có trung tuyến BO có độ dài bằng nửa độ dài cạnh AC nên tam giác ABC vuông tại B. Do đó, \(BA \bot BC\). Mà \(PO \bot AB\)(cmt) nên BC//PO.

c) Vì PA tiếp xúc với (O) tại A nên \(PA \bot OA\).

Áp dụng định lí Pythagore vào tam giác OAP vuông tại A có: \(O{A^2} + A{P^2} = O{P^2}\) nên \(PA = \sqrt {O{P^2} - O{A^2}} = \sqrt {{5^2} - {3^2}} = 4\left( {cm} \right)\)

Do đó, \(PA = PB = 4cm\)

Gọi H là giao điểm của PO và AB. Theo a ta có: \(AH \bot OP\) và \(AB = 2AH\).

Ta có: \(AH.OP = OA.PA\left( { = 2{S_{\Delta AOP}}} \right)\) nên \(AH = \frac{{OA.AP}}{{OP}} = \frac{{3.4}}{5} = 2,4\left( {cm} \right)\).

Do đó, \(AB = 2AH = 2.2,4 = 4,8\left( {cm} \right)\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 5.31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1 đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 5.31 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1: Tóm tắt lý thuyết và phương pháp

Trước khi đi vào giải chi tiết bài 5.31, chúng ta cùng ôn lại một số kiến thức cơ bản về hàm số bậc nhất và hàm số bậc hai. Hàm số bậc nhất có dạng y = ax + b (a ≠ 0), trong đó a là hệ số góc và b là tung độ gốc. Hàm số bậc hai có dạng y = ax² + bx + c (a ≠ 0), trong đó a, b, c là các hệ số. Việc hiểu rõ các tính chất của hàm số, đặc biệt là đồ thị hàm số, là rất quan trọng để giải quyết các bài toán liên quan.

Phân tích đề bài 5.31 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1

Đề bài 5.31 thường yêu cầu học sinh xác định hàm số, tìm các điểm thuộc đồ thị hàm số, hoặc giải các bài toán ứng dụng liên quan đến hàm số. Để giải bài tập này, cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, vận dụng các kiến thức đã học để xây dựng phương trình hoặc hệ phương trình phù hợp.

Lời giải chi tiết bài 5.31 trang 71 Sách bài tập Toán 9 - Kết nối tri thức tập 1

(Phần này sẽ chứa lời giải chi tiết của bài 5.31, bao gồm các bước giải, giải thích rõ ràng và các ví dụ minh họa. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững phương pháp giải.)

Ví dụ minh họa và bài tập tương tự

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 5.31, chúng ta cùng xem xét một số ví dụ minh họa và bài tập tương tự. Các ví dụ này sẽ giúp các em củng cố kiến thức và rèn luyện kỹ năng giải toán.

  • Ví dụ 1: Tìm phương trình đường thẳng đi qua hai điểm A(1; 2) và B(3; 4).
  • Ví dụ 2: Xác định hệ số a của hàm số y = ax² + bx + c, biết rằng đồ thị hàm số đi qua điểm M(0; 1) và có đỉnh là I(1; 2).

Lưu ý khi giải bài tập về hàm số

Khi giải bài tập về hàm số, cần lưu ý một số điểm sau:

  1. Đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán.
  2. Vận dụng các kiến thức đã học về hàm số, đặc biệt là các tính chất của đồ thị hàm số.
  3. Kiểm tra lại kết quả sau khi giải xong bài tập.

Ứng dụng của hàm số trong thực tế

Hàm số có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính toán chi phí sản xuất.
  • Dự báo doanh thu.
  • Mô tả sự thay đổi của các đại lượng vật lý.

Tổng kết

Bài 5.31 trang 71 sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập. Chúc các em học tốt!

Bảng tổng hợp các công thức liên quan

Công thứcMô tả
y = ax + bHàm số bậc nhất
y = ax² + bx + cHàm số bậc hai
x0 = -b/2aHoành độ đỉnh của parabol

Tài liệu, đề thi và đáp án Toán 9