Bài 9.24 trang 56 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.24 trang 56, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho hai tia AB và DC cắt nhau tại điểm K, hai đường chéo AC và BD cắt nhau tại điểm H. Kí hiệu $oversetfrown{AD}$ là cung AD không chứa điểm B và $oversetfrown{BC}$ là cung BC không chứa A. Chứng minh rằng: a) (widehat {BKC} = frac{1}{2})(sđ$oversetfrown{AD}$-sđ$oversetfrown{BC}$); b) (widehat {BHC} = frac{1}{2})(sđ$oversetfrown{AD}$+sđ$oversetfrown{BC}$).
Đề bài
Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho hai tia AB và DC cắt nhau tại điểm K, hai đường chéo AC và BD cắt nhau tại điểm H. Kí hiệu $\overset\frown{AD}$ là cung AD không chứa điểm B và $\overset\frown{BC}$ là cung BC không chứa A. Chứng minh rằng:
a) \(\widehat {BKC} = \frac{1}{2}\)(sđ$\overset\frown{AD}$ - sđ$\overset\frown{BC}$);
b) \(\widehat {BHC} = \frac{1}{2}\)(sđ$\overset\frown{AD}$ + sđ$\overset\frown{BC}$).
Phương pháp giải - Xem chi tiết
a) Chứng minh \(\widehat {ABD} = \frac{1}{2}\)sđ$\overset\frown{AD}$, \(\widehat {BDC} = \frac{1}{2}\)sđ$\overset\frown{BC}$ nên \(\widehat {BKC} = \widehat {ABD} - \widehat {BDK} = \frac{1}{2}\)(sđ$\overset\frown{AD}$-sđ$\overset\frown{BC}$).
b) Chứng minh \(\widehat {BAC} = \frac{1}{2}\)sđ$\overset\frown{BC}$. Suy ra \(\widehat {BHC} = {180^o} - \widehat {AHB} = \widehat {ABH} + \widehat {BAH} = \frac{1}{2}\)
Lời giải chi tiết
a) Xét (O): \(\widehat {ABD} = \frac{1}{2}\)sđ $\overset\frown{AD}$ (góc nội tiếp chắn cung AD), \(\widehat {BDC} = \frac{1}{2}\)sđ$\overset\frown{BC}$ (góc nội tiếp chắn cung BC).
Do đó, \(\widehat {BKC} = \widehat {ABD} - \widehat {BDK} = \frac{1}{2}\)(sđ$\overset\frown{AD}$ - sđ$\overset\frown{BC}$).
b) Vì góc BAC là góc nội tiếp đường tròn (O) chắn cung BC nên \(\widehat {BAC} = \frac{1}{2}\)sđ$\overset\frown{BC}$.
Do đó,
\(\widehat {BHC} = {180^o} - \widehat {AHB} = \widehat {ABH} + \widehat {BAH} \) \(= \frac{1}{2}\)(sđ$\overset\frown{AD}$ + sđ$\overset\frown{BC}$).
Trước khi đi vào giải chi tiết bài 9.24, chúng ta cùng ôn lại một số kiến thức cơ bản về hàm số bậc nhất và hàm số bậc hai. Hàm số bậc nhất có dạng y = ax + b (a ≠ 0), trong đó a là hệ số góc và b là tung độ gốc. Hàm số bậc hai có dạng y = ax² + bx + c (a ≠ 0), trong đó a, b, c là các hệ số. Việc hiểu rõ các tính chất của hàm số, đặc biệt là đồ thị hàm số, là rất quan trọng để giải quyết các bài toán liên quan.
Đề bài 9.24 thường yêu cầu học sinh xác định hàm số, tìm các điểm thuộc đồ thị hàm số, hoặc giải các bài toán ứng dụng liên quan đến hàm số. Để giải bài tập này, cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, vận dụng các kiến thức đã học để xây dựng phương trình hoặc hệ phương trình phù hợp.
(Phần này sẽ chứa lời giải chi tiết cho bài 9.24, bao gồm các bước giải, giải thích rõ ràng và các ví dụ minh họa. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững phương pháp giải.)
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 9.24, chúng ta sẽ cùng xem xét một số ví dụ minh họa. Sau đó, chúng ta sẽ đưa ra một số bài tập tương tự để các em tự luyện tập và củng cố kiến thức.
Để giải nhanh các bài tập về hàm số, các em có thể áp dụng một số mẹo sau:
Để nâng cao khả năng giải toán, các em nên luyện tập thêm với các bài tập khác trong sách bài tập Toán 9 - Kết nối tri thức tập 2. Ngoài ra, các em có thể tìm kiếm các bài tập trực tuyến hoặc tham gia các khóa học toán online.
Bài 9.24 trang 56 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em sẽ hiểu rõ phương pháp giải và tự tin làm bài tập. Chúc các em học tốt!
Công thức | Mô tả |
---|---|
y = ax + b | Hàm số bậc nhất |
y = ax² + bx + c | Hàm số bậc hai |