Bài 1.30 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về hàm số bậc nhất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.30 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Một buổi biểu diễn ca nhạc bán được 1 500 vé. Mỗi vé loại I có giá 250 nghìn đồng và mỗi vé loại II có giá 150 nghìn đồng. Tổng số tiền bán vé thu được là 285 triệu đồng. Hỏi mỗi loại vé đã bán được bao nhiêu vé?
Đề bài
Một buổi biểu diễn ca nhạc bán được 1 500 vé. Mỗi vé loại I có giá 250 nghìn đồng và mỗi vé loại II có giá 150 nghìn đồng. Tổng số tiền bán vé thu được là 285 triệu đồng. Hỏi mỗi loại vé đã bán được bao nhiêu vé?
Phương pháp giải - Xem chi tiết
Các bước giải một bài toán bằng cách lập hệ phương trình:
Bước 1. Lập hệ phương trình:
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
- Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2. Giải hệ phương trình.
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
Lời giải chi tiết
Gọi số vé loại I và loại II bán được lần lượt là x, y (vé). Điều kiện: \(x,y \in \mathbb{N},x,y < 1\;500\).
Vì buổi biểu diễn ca nhạc bán được 1 500 vé nên ta có phương trình \(x + y = 1\;500\) (1)
Vì mỗi vé loại I giá 250 nghìn đồng, mỗi vé loại II giá 150 nghìn đồng và tổng số tiền vé là 285 triệu đồng =285 000 nghìn đồng nên ta có phương trình: \(250x + 150y = 285\;000\) hay \(5x + 3y = 5\;700\) (2).
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 1\;500\\5x + 3y = 5\;700\end{array} \right.\)
Từ phương trình thứ nhất của hệ ta có: \(x = 1500 - y\), thay vào phương trình thứ hai của hệ ta được: \(5\left( {1\;500 - y} \right) + 3y = 5\;700\), suy ra \(2y = 1800\), suy ra \(y = 900\).
Do đó, \(x = 1500 - 900 = 600\).
Hai giá trị \(x = 600\), \(y = 900\) thỏa mãn điều kiện của ẩn.
Vậy số vé loại I và loại II bán được lần lượt là 600 vé và 900 vé.
Bài 1.30 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1 thuộc chương Hàm số bậc nhất. Để giải bài này, học sinh cần nắm vững các kiến thức về:
Nội dung bài tập:
Bài 1.30 yêu cầu học sinh xác định hàm số bậc nhất đi qua hai điểm cho trước. Sau đó, dựa vào hàm số vừa tìm được, học sinh cần tính giá trị của y khi x nhận một giá trị cụ thể.
Để giải bài 1.30, ta thực hiện các bước sau:
Ví dụ minh họa:
Giả sử bài tập cho hai điểm A(0; 2) và B(1; 5). Ta thực hiện như sau:
Khi giải bài tập về hàm số bậc nhất, học sinh cần chú ý:
Để củng cố kiến thức về hàm số bậc nhất, học sinh có thể làm thêm các bài tập tương tự sau:
Bài 1.30 trang 19 Sách bài tập Toán 9 - Kết nối tri thức tập 1 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất. Bằng cách nắm vững các kiến thức và kỹ năng cần thiết, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán 9.
Giaitoan.edu.vn hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về bài tập và có thêm động lực để học tập.