Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2

Giải bài 5 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2

Giải bài 5 trang 72 Sách bài tập Toán 9 - Kết nối tri thức tập 2

Bài 5 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về hàm số bậc nhất để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Cho phương trình ({x^2} + 4x + m = 0). a) Giải phương trình với (m = 1). b) Tìm m để phương trình có hai nghiệm ({x_1},{x_2}) thỏa mãn (x_1^2 + x_2^2 = 10).

Đề bài

Cho phương trình \({x^2} + 4x + m = 0\).

a) Giải phương trình với \(m = 1\).

b) Tìm m để phương trình có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2 1

a) Thay \(m = 1\) vào phương trình đầu bài cho, ta thu được phương trình bậc nhất hai ẩn. Giải phương trình bằng cách sử dụng công thức nghiệm thu gọn.

b) + Tìm điều kiện của m để phương trình đã cho có nghiệm và viết định lí Viète để tính \({x_1} + {x_2};{x_1}.{x_2}\).

+ Biến đổi \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\).

+ Thay \({x_1} + {x_2};{x_1}.{x_2}\) đã tính theo định lí Viète vào biểu thức vừa biến đổi, ta được phương trình ẩn m, từ đó tìm m, đối chiếu với điều kiện của m và đưa ra kết luận.

Lời giải chi tiết

a) Với \(m = 1\) ta có: \({x^2} + 4x + 1 = 0\).

Vì \(\Delta ' = {2^2} - 1 = 3\) nên phương trình có hai nghiệm phân biệt \({x_1} = - 2 - \sqrt 3 \); \({x_2} = - 2 + \sqrt 3 \).

b) \({x^2} + 4x + m = 0\) (*)

Phương trình (*) có hai nghiệm khi \(\Delta ' \ge 0\), tức là \(4 - m \ge 0\), suy ra \(m \le 4\) (1).

Theo định lí Viète ta có: \({x_1} + {x_2} = - 4;{x_1}.{x_2} = m\).

Ta có:

\(x_1^2 + x_2^2 = x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2} \\= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\)

Do đó, \({\left( { - 4} \right)^2} - 2.m = 10\), suy ra \(m = 3\) (thỏa mãn (1)).

Vậy \(m = 3\) thì thỏa mãn yêu cầu bài toán.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 5 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2 đặc sắc thuộc chuyên mục sgk toán 9 trên nền tảng học toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 5 trang 72 Sách bài tập Toán 9 - Kết nối tri thức tập 2: Tổng quan

Bài 5 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2 thuộc chương Hàm số bậc nhất. Bài tập này tập trung vào việc xác định hệ số góc và đường thẳng song song, vuông góc. Việc nắm vững kiến thức về hàm số bậc nhất là nền tảng quan trọng để giải quyết bài toán này.

Nội dung bài tập

Bài tập yêu cầu học sinh thực hiện các nhiệm vụ sau:

  • Xác định hệ số góc của đường thẳng.
  • Tìm điều kiện để hai đường thẳng song song.
  • Tìm điều kiện để hai đường thẳng vuông góc.
  • Viết phương trình đường thẳng khi biết hệ số góc và một điểm thuộc đường thẳng.

Lời giải chi tiết bài 5 trang 72

Để giải bài 5 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2, chúng ta cần nắm vững các kiến thức sau:

  1. Hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a là hệ số góc và b là tung độ gốc.
  2. Hệ số góc: Hệ số góc a xác định độ dốc của đường thẳng. Nếu a > 0, đường thẳng đi lên; nếu a < 0, đường thẳng đi xuống; nếu a = 0, đường thẳng là đường thẳng ngang.
  3. Đường thẳng song song: Hai đường thẳng y = a1x + b1 và y = a2x + b2 song song khi và chỉ khi a1 = a2 và b1 ≠ b2.
  4. Đường thẳng vuông góc: Hai đường thẳng y = a1x + b1 và y = a2x + b2 vuông góc khi và chỉ khi a1 * a2 = -1.

Ví dụ minh họa:

Giả sử chúng ta có đường thẳng y = 2x + 3. Hệ số góc của đường thẳng này là 2. Để tìm một đường thẳng song song với đường thẳng này, chúng ta cần chọn một hệ số góc bằng 2 và một tung độ gốc khác 3. Ví dụ, đường thẳng y = 2x + 5 song song với đường thẳng y = 2x + 3.

Để tìm một đường thẳng vuông góc với đường thẳng y = 2x + 3, chúng ta cần chọn một hệ số góc sao cho tích của nó với 2 bằng -1. Hệ số góc đó là -1/2. Ví dụ, đường thẳng y = -1/2x + 1 vuông góc với đường thẳng y = 2x + 3.

Bài tập vận dụng

Để củng cố kiến thức, các em có thể tự giải các bài tập sau:

  • Tìm hệ số góc của đường thẳng y = -3x + 1.
  • Viết phương trình đường thẳng song song với đường thẳng y = x + 2 và đi qua điểm A(1, 3).
  • Viết phương trình đường thẳng vuông góc với đường thẳng y = -2x + 5 và đi qua điểm B(0, 4).

Kết luận

Bài 5 trang 72 sách bài tập Toán 9 - Kết nối tri thức tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và các tính chất của nó. Việc nắm vững kiến thức này sẽ giúp các em tự tin giải quyết các bài toán liên quan đến hàm số bậc nhất trong các kỳ thi sắp tới.

Bảng tóm tắt công thức

Công thứcMô tả
y = ax + bPhương trình hàm số bậc nhất
a1 = a2, b1 ≠ b2Điều kiện hai đường thẳng song song
a1 * a2 = -1Điều kiện hai đường thẳng vuông góc

Tài liệu, đề thi và đáp án Toán 9