Bài 13 trang 96 SGK Toán 10 Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán lớp 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 13 trang 96 SGK Toán 10 Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Từ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có
Đề bài
Từ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có
\(r = \frac{{\sqrt {(b + c - a)(c + a - b)(a + b - c)} }}{{2\sqrt {a + b + c} }}\)
Lời giải chi tiết
Ta có: \(S = p.r \Rightarrow r = \frac{S}{p}\)
Mà \(S = \sqrt {p(p - a)(p - b)(p - c)} \) (công thức Heron), \(p = \frac{{a + b + c}}{2}\)
\(\begin{array}{l} \Rightarrow S = \sqrt {\frac{{a + b + c}}{2}\left( {\frac{{a + b + c}}{2} - a} \right)\left( {\frac{{a + b + c}}{2} - b} \right)\left( {\frac{{a + b + c}}{2} - c} \right)} \\ = \sqrt {\frac{1}{{16}}.\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \\ = \frac{1}{4}\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \end{array}\)
\(\begin{array}{l} \Rightarrow r = \frac{{\frac{1}{4}\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{\frac{1}{2}\left( {a + b + c} \right)}}\\ = \frac{1}{2}\frac{{\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{a + b + c}}\\ = \frac{{\sqrt {\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{2\sqrt {a + b + c} }}\;\;(dpcm)\end{array}\)
Bài 13 trang 96 SGK Toán 10 – Kết nối tri thức thuộc chương 4: Vectơ trong mặt phẳng. Bài tập này tập trung vào việc ứng dụng các tính chất của vectơ, đặc biệt là các phép toán cộng, trừ vectơ và tích của một số với vectơ, để giải quyết các bài toán liên quan đến hình học phẳng.
Bài 13 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng phần của bài tập.
Đề bài: Cho hai vectơ a = (2; -1) và b = (-3; 4). Tính a + b và a - b.
Lời giải:
a + b = (2 + (-3); -1 + 4) = (-1; 3)
a - b = (2 - (-3); -1 - 4) = (5; -5)
Đề bài: Cho A(1; 2), B(3; 4). Tìm tọa độ của vectơ AB.
Lời giải:
AB = (3 - 1; 4 - 2) = (2; 2)
Đề bài: Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng OA = OC và OB = OD.
Lời giải:
Vì ABCD là hình bình hành nên O là trung điểm của AC và BD.
Do đó, OA = OC và OB = OD (theo định nghĩa trung điểm).
Bài 13 trang 96 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về vectơ và ứng dụng của nó trong hình học phẳng. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh sẽ tự tin hơn khi làm bài tập Toán 10.