Bài 4.17 trang 65 SGK Toán 10 tập 1 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.17 trang 65 SGK Toán 10 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trong mặt phẳng tọa độ Oxy, cho các vectơ a=3.i-2j , b={4; - 1} và các điểm M (-3; 6), N(3; -3). a) Tìm mối liên hệ giữa các vectơ MN và 2a-b. b) Các điểm O, M, N có thẳng hàng hay không? c) Tìm điểm P(x; y) để OMNP là một hình bình hành.
Đề bài
Trong mặt phẳng tọa độ Oxy, cho các vectơ \(\overrightarrow a = 3.\overrightarrow i - 2.\overrightarrow j ,\)\(\overrightarrow b = \left( {4; - 1} \right)\) và các điểm M (-3; 6), N(3; -3).
a) Tìm mối liên hệ giữa các vectơ \(\overrightarrow {MN} \) và \(2\;\overrightarrow a - \overrightarrow b \).
b) Các điểm O, M, N có thẳng hàng hay không?
c) Tìm điểm P(x; y) để OMNP là một hình bình hành.
Phương pháp giải - Xem chi tiết
b) Các điểm O, M, N thẳng hàng khi và chỉ khi hai vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) cùng phương
c) OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM} = \overrightarrow {PN} \)
Lời giải chi tiết
a) Ta có: \(\overrightarrow b = \left( {4; - 1} \right)\) và \(\overrightarrow a = 3.\overrightarrow i - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)
\( \Rightarrow 2\;\overrightarrow a - \overrightarrow b = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)
Lại có: M (-3; 6), N(3; -3)
\( \Rightarrow \overrightarrow {MN} = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)
Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN} = 3\left( {2\;\overrightarrow a - \overrightarrow b } \right)\)
b) Ta có: \(\overrightarrow {OM} = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON} = \left( {3; - 3} \right)\) (do N (3; -3)).
Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).
Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.
Vậy chúng không thẳng hàng.
c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM} = \overrightarrow {PN} \).
Do \(\overrightarrow {OM} = \left( { - 3;6} \right),\;\overrightarrow {PN} = \left( {3 - x; - 3 - y} \right)\) nên
\(\overrightarrow {OM} = \overrightarrow {PN} \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 = - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 9\end{array} \right.\)
Vậy điểm cần tìm là P (6; -9).
Bài 4.17 SGK Toán 10 tập 1 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài này, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ cho một hình vẽ hoặc một số thông tin về các điểm, đường thẳng, góc. Yêu cầu của bài toán có thể là tính độ dài đoạn thẳng, góc giữa hai đường thẳng, diện tích hình, hoặc chứng minh một tính chất hình học nào đó.
(Ở đây sẽ là lời giải chi tiết bài toán, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Lời giải cần được trình bày một cách logic và dễ hiểu, kèm theo hình vẽ minh họa nếu cần thiết. Ví dụ:)
Ví dụ (giả định): Cho tam giác ABC có A(0;0), B(1;2), C(-1;1). Tính độ dài cạnh BC.
Giải:
Vậy độ dài cạnh BC là √5.
Ngoài bài 4.17, còn rất nhiều bài tập tương tự liên quan đến vectơ và ứng dụng trong hình học. Để giải các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng online hoặc tham gia các khóa học Toán 10 để được hướng dẫn chi tiết hơn.
Bài 4.17 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày ở trên, các em học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự. Chúc các em học tập tốt!
(Bài viết có thể được mở rộng thêm với các ví dụ minh họa khác, các bài tập luyện tập, và các lưu ý quan trọng khi giải bài tập về vectơ.)