Bài 6.21 trang 27 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.21 trang 27 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
Phương pháp giải - Xem chi tiết
Bước 1: Bình phương hai vế và giải phương trình nhận được
Bước 2: Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không và kết luân nghiệm
Lời giải chi tiết
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}6{x^2} + 13x + 13 = 4{x^2} + 16x + 16\\ \Leftrightarrow 2{x^2} - 3x - 3 = 0\end{array}\)
\( \Leftrightarrow x = \frac{{3 - \sqrt {33} }}{4}\) hoặc \(x = \frac{{3 + \sqrt {33} }}{4}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị \(x = \frac{{3 - \sqrt {33} }}{4}\) và \(x = \frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn
Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\)
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 5x + 3 = 9 + 6x + {x^2}\\ \Leftrightarrow {x^2} - x - 6 = 0\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = 3\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn
Vậy phương trình vô nghiệm
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}3{x^2} - 17x + 23 = {x^2} - 6x + 9\\ \Leftrightarrow 2{x^2} - 11x + 14 = 0\end{array}\)
\( \Leftrightarrow x = 2\) hoặc \(x = \frac{7}{2}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy \(x = \frac{7}{2}\) thỏa mãn
Vậy nghiệm của phương trình là \(x = \frac{7}{2}\)
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l} - {x^2} + 2x + 4 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 6x = 0\end{array}\)
\( \Leftrightarrow x = 0\) hoặc \(x = 3\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=3 thỏa mãn
Vậy nghiệm của phương trình là x=3
Bài 6.21 trang 27 SGK Toán 10 – Kết nối tri thức thuộc chương 1: Vectơ trong mặt phẳng. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Đề bài: (Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho tam giác ABC, tìm vectơ AB + AC)
Lời giải:
(Giải thích chi tiết từng bước giải, kèm theo hình vẽ minh họa nếu cần thiết. Ví dụ:)
Bước 1: Vẽ hình minh họa tam giác ABC.
Bước 2: Xác định vectơ AB và AC.
Bước 3: Áp dụng quy tắc cộng vectơ để tìm vectơ AB + AC.
Bước 4: Kết luận: Vectơ AB + AC là vectơ AD, với D là đỉnh thứ tư của hình bình hành ABCD.
Ngoài bài 6.21, còn rất nhiều bài tập tương tự trong chương 1: Vectơ trong mặt phẳng. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập này, học sinh cần:
Để củng cố kiến thức về bài 6.21 trang 27 SGK Toán 10 – Kết nối tri thức, các em học sinh có thể tự giải các bài tập sau:
Bài 6.21 trang 27 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về vectơ và các phép toán vectơ. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự.