Bài 6.28 trang 28 SGK Toán 10 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, đầy đủ và dễ tiếp cận nhất cho học sinh.
Tập nghiệm của phương trình
Đề bài
Tập nghiệm của phương trình \(\sqrt {2{x^2} - 3} = x - 1\) là:
A. \(\left\{ { - 1 - \sqrt 5 ; - 1 + \sqrt 5 } \right\}.\)
B. \(\left\{ { - 1 - \sqrt 5 } \right\}.\)
C. \(\left\{ { - 1 + \sqrt 5 } \right\}.\)
D. \(\emptyset .\)
Phương pháp giải - Xem chi tiết
- Tìm điều kiện để phương trình có nghĩa
- Bình phương hai vế của phương trình để mất dấu căn
- Đưa về dạng phương trình và giải: \(a{x^2} + bx + c = 0.\)
Lời giải chi tiết
ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1\)
\( \Rightarrow \) TXĐ của phương trình là: \(D = \left[ {1; + \infty } \right)\)
Giải phương trình: \(\sqrt {2{x^2} - 3} = x - 1\)
\(\begin{array}{l} \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 3} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 3 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 4 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = - 1 + \sqrt 5 }\\{x = - 1 - \sqrt 5 }\end{array}} \right.\end{array}\)
Ta thấy \(x = - 1 + \sqrt 5 \) thỏa mãn.
Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 1 + \sqrt 5 } \right\}\)
Chọn C.
Bài 6.28 trang 28 SGK Toán 10 – Kết nối tri thức yêu cầu chúng ta vận dụng kiến thức về vectơ để chứng minh một đẳng thức vectơ liên quan đến trung điểm của các cạnh trong một hình bình hành. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Trước khi đi vào giải chi tiết, chúng ta cần phân tích bài toán để xác định rõ yêu cầu và tìm ra hướng giải phù hợp. Bài toán yêu cầu chứng minh một đẳng thức vectơ, do đó, chúng ta cần sử dụng các quy tắc biến đổi vectơ để đưa về một đẳng thức đúng.
Đề bài: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng AM = DN.
Lời giải:
Khi giải các bài tập liên quan đến vectơ, các em cần chú ý những điều sau:
Để củng cố kiến thức về vectơ và ứng dụng trong hình học, các em có thể tự giải thêm các bài tập tương tự. Ví dụ:
Bài 6.28 trang 28 SGK Toán 10 – Kết nối tri thức là một bài tập cơ bản nhưng quan trọng trong chương trình học Toán 10. Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự. Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.