Chào mừng các em học sinh đến với lời giải chi tiết bài 7.4 trang 34 SGK Toán 10 – Kết nối tri thức trên giaitoan.edu.vn. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải bài tập rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập về nhà.
Giaitoan.edu.vn là nền tảng học toán online uy tín, cung cấp đầy đủ các tài liệu học tập, bài giảng và bài tập Toán 10, Toán 11, Toán 12.
Trong mặt phẳng toạ độ, cho tam giác ABC có A(1; 2), B(3; 0) và C(-2; -1).
Đề bài
Trong mặt phẳng toạ độ, cho tam giác ABC có A(1; 2), B(3; 0) và C(-2; -1).
a) Lập phương trình đường cao kẻ từ A.
b) Lập phương trình đường trung tuyến kẻ từ B.
Phương pháp giải - Xem chi tiết
a) Đường cao kẻ tử A đi qua A có vectơ pháp tuyến là \(\overrightarrow {BC} \).
b) Đường trung tuyến kẻ từ B đi qua hai điểm B và M trong M là trung điểm của cạnh AC.
Lời giải chi tiết
a) Đường cao kẻ từ A của tam giác ABC là đường thẳng đi qua A và có vectơ pháp tuyến là \(\overrightarrow {BC} = \left( { - 5; - 1} \right)\) nên phương trình đường cao đó là:
\( - 5\left( {x - 1} \right) - 1\left( {y - 2} \right) = 0 \Leftrightarrow -5x - y + 7 = 0\)
Hay \( 5x + y - 7 = 0\)
b) Gọi M là trung điểm AC. Khi đó \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{1 + \left( { - 2} \right)}}{2} = - \frac{1}{2}\\{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + \left( { - 1} \right)}}{2} = \frac{1}{2}\end{array} \right. \Rightarrow M\left( { - \frac{1}{2};\frac{1}{2}} \right)\)
Trung tuyến BM đi qua điểm \(B\left( {3;0} \right)\) nhận vectơ \(\overrightarrow {{u_{BM}}} = 2\overrightarrow {BM} = \left( { - 7;1} \right)\) là vectơ chỉ phương nên phương trình tham số của BM là \(\left\{ \begin{array}{l}x = 3 - 7t\\y = t\end{array} \right.\).
Bài 7.4 trang 34 SGK Toán 10 – Kết nối tri thức thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ và các ứng dụng thực tế.
Bài tập 7.4 thường bao gồm các dạng bài sau:
Để giải bài tập 7.4 hiệu quả, học sinh cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết cho từng ý của bài tập 7.4. Ví dụ:)
Ví dụ: Cho hai vectơ a = (1; 2) và b = (-3; 1). Tính tích vô hướng của a và b.
Giải:
a.b = (1)(-3) + (2)(1) = -3 + 2 = -1
Để củng cố kiến thức và kỹ năng giải bài tập về tích vô hướng, các em có thể tham khảo các bài tập tương tự sau:
Khi giải bài tập về tích vô hướng, các em cần chú ý:
Bài 7.4 trang 34 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu về tích vô hướng của hai vectơ và các ứng dụng của nó. Hy vọng với lời giải chi tiết và phương pháp giải bài tập rõ ràng trên đây, các em sẽ tự tin hơn khi làm bài tập về nhà và đạt kết quả tốt trong môn Toán.
Công thức | Mô tả |
---|---|
a.b = |a||b|cos(θ) | Tích vô hướng của hai vectơ a và b |
a ⊥ b ⇔ a.b = 0 | Điều kiện hai vectơ vuông góc |