Bài 5.20 trang 89 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.20 trang 89 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Đề bài
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
A. Số trung bình.
B. Mốt.
C. Trung vị.
D. Độ lệch chuẩn.
Lời giải chi tiết
Độ lệch chuẩn đo độ phân tán của mẫu số liệu
Số trung bình, mốt, trung vị đo xu thế trung tâm của mẫu số liệu.
Chọn D.
Bài 5.20 trang 89 SGK Toán 10 – Kết nối tri thức thuộc chương 4: Vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh sử dụng các kiến thức về:
Trước khi đi vào giải bài tập, chúng ta cần đọc kỹ đề bài, xác định rõ yêu cầu của bài toán. Thông thường, bài 5.20 sẽ cho một hình vẽ hoặc một số thông tin về các điểm, vectơ trong mặt phẳng. Nhiệm vụ của học sinh là sử dụng các kiến thức đã học để tìm ra các vectơ cần tính, tính các góc, độ dài hoặc chứng minh một đẳng thức nào đó.
(Nội dung lời giải chi tiết bài 5.20 sẽ được trình bày ở đây. Lời giải cần bao gồm các bước giải rõ ràng, dễ hiểu, có sử dụng hình vẽ minh họa nếu cần thiết. Cần giải thích rõ ràng lý do tại sao lại thực hiện các bước giải đó, sử dụng các công thức, định lý nào. Ví dụ:)
Ví dụ (giả định): Cho tam giác ABC có A(0;0), B(1;2), C(-1;1). Tính độ dài cạnh BC.
Giải:
Ngoài bài 5.20, chương 4 còn có nhiều bài tập tương tự, yêu cầu học sinh vận dụng các kiến thức về vectơ để giải quyết các bài toán khác nhau. Một số dạng bài tập thường gặp:
Để giải tốt các bài tập về vectơ, học sinh cần:
Để học tốt môn Toán 10, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 5.20 trang 89 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng, giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán 10.