Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 96 SGK Toán 10 – Kết nối tri thức

Giải bài 9 trang 96 SGK Toán 10 – Kết nối tri thức

Giải bài 9 trang 96 SGK Toán 10 – Kết nối tri thức

Bài 9 trang 96 SGK Toán 10 Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán liên quan đến hình học phẳng.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9 trang 96 SGK Toán 10 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Hãy xác định phương trình của parabol (P) đã cho và vẽ parabol này.

Đề bài

Cho hàm số \(y = f(x) = a{x^2} + bx + c\) với đồ thị là parabol (P) có đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\) và đi qua điểm \(A(1;2)\)

a) Biết rằng phương trình của parabol có thể viết dưới dạng \(y = a{(x - h)^2} + k\), tron đó I(h;k) là tọa độ đỉnh của parabol. Hãy xác định phương trình của parabol (P) đã cho và vẽ parabol này.

b) Từ parabol (P) đã vẽ ở câu a, hãy cho biết khoảng đồng biến và khoảng nghịch biến của hàm số \(y = f(x)\)

c) Giải bất phương trình \(f(x) \ge 0\)

Lời giải chi tiết

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

Giải bài 9 trang 96 SGK Toán 10 – Kết nối tri thức 1

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 9 trang 96 SGK Toán 10 – Kết nối tri thức đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 9 trang 96 SGK Toán 10 – Kết nối tri thức: Tổng quan

Bài 9 trang 96 SGK Toán 10 – Kết nối tri thức thuộc chương 4: Vectơ trong mặt phẳng. Bài tập này tập trung vào việc áp dụng các tính chất của vectơ, đặc biệt là các phép toán cộng, trừ vectơ và tích của một số với vectơ để chứng minh các đẳng thức vectơ và giải quyết các bài toán hình học.

Nội dung bài tập

Bài 9 trang 96 SGK Toán 10 – Kết nối tri thức thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các quy tắc phép toán vectơ để biến đổi và chứng minh đẳng thức cho trước.
  • Tìm vectơ: Cho trước một số vectơ và các mối quan hệ giữa chúng, yêu cầu tìm một vectơ chưa biết.
  • Ứng dụng vectơ vào hình học: Sử dụng vectơ để chứng minh các tính chất của hình học như tính chất của hình bình hành, hình thang, tam giác...

Lời giải chi tiết bài 9 trang 96 SGK Toán 10 – Kết nối tri thức

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài 9 trang 96 SGK Toán 10 – Kết nối tri thức. (Lưu ý: Nội dung chi tiết lời giải sẽ được trình bày cụ thể cho từng câu hỏi trong bài tập. Do giới hạn độ dài, chúng ta sẽ tập trung vào phương pháp chung và các lưu ý quan trọng.)

Phương pháp giải bài tập vectơ

Để giải tốt các bài tập về vectơ, các em cần nắm vững các kiến thức sau:

  1. Định nghĩa vectơ: Hiểu rõ khái niệm vectơ, các yếu tố của vectơ (điểm gốc, điểm cuối, độ dài, hướng).
  2. Các phép toán vectơ: Nắm vững quy tắc cộng, trừ vectơ, tích của một số với vectơ.
  3. Các tính chất của vectơ: Hiểu rõ các tính chất giao hoán, kết hợp, phân phối của phép cộng và phép nhân vectơ.
  4. Ứng dụng vectơ vào hình học: Biết cách sử dụng vectơ để biểu diễn các điểm, đường thẳng, đoạn thẳng và chứng minh các tính chất hình học.

Ví dụ minh họa

Ví dụ 1: Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng OA = OC.

Lời giải:

Vì ABCD là hình bình hành nên AB = DCAB // DC. Do đó, ABDC là hình bình hành. Suy ra OA = OC (tính chất đường chéo của hình bình hành).

Lưu ý khi giải bài tập vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng các quy tắc phép toán vectơ một cách chính xác.
  • Chú ý đến chiều và hướng của các vectơ.
  • Kiểm tra lại kết quả sau khi giải xong.

Bài tập luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, các em có thể tham khảo thêm các bài tập sau:

  • Bài 10 trang 96 SGK Toán 10 – Kết nối tri thức
  • Bài tập trắc nghiệm về vectơ
  • Các bài tập nâng cao về vectơ

Kết luận

Bài 9 trang 96 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp các em học sinh hiểu sâu hơn về vectơ và ứng dụng của nó trong hình học. Hy vọng với lời giải chi tiết và phương pháp giải bài tập mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn khi giải các bài tập về vectơ.

Khái niệmMô tả
VectơMột đoạn thẳng có hướng.
Phép cộng vectơQuy tắc hình bình hành hoặc quy tắc tam giác.
Tích của một số với vectơLàm thay đổi độ dài của vectơ.

Tài liệu, đề thi và đáp án Toán 10