Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 7.16 trang 47 SGK Toán 10 – Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi không chỉ cung cấp đáp án mà còn giải thích rõ ràng từng bước, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Trong mặt phẳng toạ độ, cho tam giác ABC, với A(6; -2), B(4; 2), C(5; -5). Viết phương trình đường tròn ngoại tiếp tam giác đó.
Đề bài
Trong mặt phẳng toạ độ, cho tam giác ABC, với A(6; -2), B(4; 2), C(5; -5). Viết phương trình đường tròn ngoại tiếp tam giác đó.
Lời giải chi tiết
Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {6 - a} \right)^2} + {\left( { - 2 - b} \right)^2} = {\left( {4 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {4 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\)
Vậy \(I\left( {1; - 2} \right)\) và \(R = IA = \sqrt {{{\left( {1 - 6} \right)}^2} + {{\left( { - 2 + 2} \right)}^2}} = 5\)
Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
Cách 2:
Gọi phương trình đường tròn cần tìm là (C):\({x^2} + {y^2} + 2ax + 2by + c = 0\) \(\left( {{a^2} + {b^2} - c > 0} \right)\)
\(A(6; -2), B(4; 2), C(5; -5)\) thuộc (C) nên ta có:
\(\left\{ {\begin{array}{*{20}{l}}{36 + 4 + 12a - 4b + c = 0}\\{16 + 4 + 8a + 4b + c = 0}\\{25 + 25 + 10a - 10b + c = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{12a - 4b + c = - 40}\\{8a + 4b + c = - 20}\\{10a - 10b + c = - 50}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2} \,\rm{(thỏa mãn)}\\{c = - 20}\end{array}} \right.\)
Vậy phương trình đường tròn đi qua 3 điểm A, B, C là: \({x^2} + {y^2} - 2x + 4y -20 = 0\) hay \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
Bài 7.16 trang 47 SGK Toán 10 – Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài tập 7.16 thường bao gồm các dạng bài sau:
Để giải bài 7.16 trang 47 SGK Toán 10 – Kết nối tri thức, bạn cần thực hiện theo các bước sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tính vectơ AB + CD, với A, B, C, D là các điểm trên mặt phẳng. Để giải bài tập này, bạn cần xác định tọa độ của các điểm A, B, C, D, sau đó áp dụng công thức tính tổng của hai vectơ:
AB + CD = (xB - xA, yB - yA) + (xD - xC, yD - yC) = (xB - xA + xD - xC, yB - yA + yD - yC)
Ngoài bài 7.16, còn rất nhiều bài tập tương tự trong SGK Toán 10 – Kết nối tri thức. Để giải các bài tập này, bạn có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn nên luyện tập thêm các bài tập khác trong SGK Toán 10 – Kết nối tri thức và các tài liệu tham khảo khác. Bạn cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.
Bài 7.16 trang 47 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp bạn hiểu rõ hơn về vectơ và các phép toán vectơ. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin giải quyết bài tập một cách hiệu quả.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng. |
Phép cộng vectơ | Quy tắc hình bình hành. |
Tích của một số với vectơ | Làm thay đổi độ dài của vectơ. |