Logo Header
  1. Môn Toán
  2. Giải bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức

Giải bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức

Giải bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức

Bài 6.22 trang 27 SGK Toán 10 Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.22 trang 27 SGK Toán 10 Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

(H.6.21). Gọi H là giao điểm của AB và CD và đặt x=AH. Hãy thiết lập một phương trình để tính độ dài x, từ đó tính diện tích tứ giác ABCD

Đề bài

Cho từ giác ABCD có \(AB \bot CD;AB = 2;BC = 13;CD = 8;DA = 5\) (H.6.21). Gọi H là giao điểm của AB và CD và đặt x=AH. Hãy thiết lập một phương trình để tính độ dài x, từ đó tính diện tích tứ giác ABCD

Giải bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức 2

Bước 1: Tính HD,HC theo x

Bước 2: Sử dụng định lý py-ta-go cho tam giác vuông BHC

\(B{C^2} = H{B^2} + H{C^2}\)

Khi đó ta lập được phương trình \(4\sqrt {25 - {x^2}} = - x + 19\)

Bước 3: Giải phương trình trên ta tìm được x

Lời giải chi tiết

Ta có :AH=x (x>0)

Xét tam giác AHD vuông ở H, ta có:

\(A{D^2} = A{H^2} + H{D^2} \Leftrightarrow H{D^2} = A{D^2} - A{H^2} = 25 - {x^2}\)

\( \Rightarrow HD = \sqrt {25 - {x^2}} \)

Ta có: \(HC = HD + DC = \sqrt {25 - {x^2}} + 8\)

\(HB = AH + AB = x + 2\)

Xét tam giác HBC vuông tại H, ta có:

\(\begin{array}{l}B{C^2} = H{B^2} + H{C^2}\\ \Leftrightarrow {13^2} = {(x + 2)^2} + {\left( {\sqrt {25 - {x^2}} + 8} \right)^2}\\ \Leftrightarrow 169 = {x^2} + 4x + 4 + 25 - {x^2} + 16\sqrt {25 - {x^2}} + 64\\ \Leftrightarrow 16\sqrt {25 - {x^2}} = - 4x + 76\\ \Leftrightarrow 4\sqrt {25 - {x^2}} = - x + 19\end{array}\)

Bình phương hai vế của phương trình trên ta được:

\(\begin{array}{l}16(25 - {x^2}) = {x^2} - 38x + 361\\ \Leftrightarrow 17{x^2} - 38x - 39 = 0\end{array}\)

\( \Leftrightarrow x = 3\) hoặc \(x = \frac{{ - 13}}{{17}}\)

Thay lần lượt các giá trị trên vào phương trình, ta thấy hai giá trị đều thỏa mãn

Do x>0 nên ta chọn x=3 => AH=3

\(\begin{array}{l}HD = \sqrt {25 - {3^2}} = 4\\HC = 4 + 8 = 12\\HB = 3 + 2 = 5\end{array}\)

Diện tích tam giác HAD là \({S_1} = \frac{1}{2}.HA.HD = \frac{1}{2}.3.4 = 6\)

Diện tích tam giác HBC là \({S_2} = \frac{1}{2}.HB.HC = \frac{1}{2}.5.12 = 30\)

Vậy diện tích tứ giác ABCD là \(S = {S_2} - {S_1} = 30 - 6 = 24\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức: Tóm tắt lý thuyết và phương pháp giải

Bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản sau:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng. Vectơ được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Định nghĩa, tính chất và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh tính chất hình học, giải bài toán tìm điểm thỏa mãn điều kiện.

Lời giải chi tiết bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức

Đề bài: (Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho tam giác ABC, tìm tập hợp các điểm M thỏa mãn MA + MB = MC)

Lời giải:

  1. Phân tích bài toán: Xác định các yếu tố quan trọng của bài toán, các điều kiện đã cho và yêu cầu cần tìm.
  2. Sử dụng kiến thức: Áp dụng các định nghĩa, tính chất và công thức liên quan đến vectơ để xây dựng phương trình hoặc hệ phương trình.
  3. Giải phương trình/hệ phương trình: Tìm nghiệm của phương trình hoặc hệ phương trình để xác định tập hợp các điểm thỏa mãn điều kiện.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả tìm được phù hợp với điều kiện của bài toán và có ý nghĩa hình học.

Ví dụ minh họa: (Giải chi tiết bài toán với các bước cụ thể, sử dụng hình vẽ minh họa nếu cần)

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 6.22, còn rất nhiều bài tập tương tự liên quan đến vectơ trong không gian. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:

  • Bài tập về tìm tọa độ của vectơ: Sử dụng công thức tính tọa độ của vectơ khi biết tọa độ của điểm gốc và điểm cuối.
  • Bài tập về tính độ dài của vectơ: Sử dụng công thức tính độ dài của vectơ dựa trên tọa độ của nó.
  • Bài tập về tích vô hướng của hai vectơ: Sử dụng công thức tính tích vô hướng và các tính chất liên quan để giải quyết bài toán.
  • Bài tập về ứng dụng của vectơ trong chứng minh hình học: Sử dụng vectơ để biểu diễn các đoạn thẳng, góc và chứng minh các tính chất hình học.

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, các em học sinh có thể tham khảo thêm các bài tập sau:

  • Bài tập trong SGK Toán 10 – Kết nối tri thức
  • Bài tập trong sách bài tập Toán 10
  • Các bài tập trực tuyến trên các trang web học toán

Kết luận

Bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về vectơ và ứng dụng của nó trong hình học. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10