Chào mừng các em học sinh đến với lời giải chi tiết bài 20 trang 97 SGK Toán 10 Kết nối tri thức. Bài học này tập trung vào việc ứng dụng kiến thức về vectơ để giải quyết các bài toán hình học phẳng.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Chọn ngẫu nhiên ba số khác nhau từ 23 số nguyên dương đầu tiên. Tìm xác suất để tổng ba số được chọn là một số chẵn.
Đề bài
Chọn ngẫu nhiên ba số khác nhau từ 23 số nguyên dương đầu tiên. Tìm xác suất để tổng ba số được chọn là một số chẵn.
Lời giải chi tiết
23 số nguyên dương đầu tiên gồm các số từ 0 đến 22, trong đó có 11 số lẻ và 12 số chẵn.
Số cách chọn 3 số từ 23 số (không kể thứ tự) là: \(C_{23}^3\)
Tổng ba số là một số chẵn \( \Leftrightarrow \)Trong ba số, có 1 số chẵn và 2 số lẻ hoặc 3 số đều chẵn.
Trường hợp 1: Trong ba số có 1 số chẵn và 2 số lẻ
Số cách chọn 1 số chẵn là: 12 cách
Số cách chọn 2 số lẻ (trong 11 số lẻ) là: \(C_{11}^2\) cách
Vậy có \(12.C_{11}^2\) cách để chọn bộ ba số gồm 1 số chẵn và 2 số lẻ
Trường hợp 1: Cả ba số được chọn đều là số chẵn
Số cách chọn 3 số chẵn (trong 12 số chẵn) là: \(C_{12}^3\) cách
Vậy tổng số cách để chọn bộ ba số có tổng là số chẵn là: \(12.C_{11}^2 + C_{12}^3\)
\( \Rightarrow \) Xác suất để tổng ba số được chọn là một số chẵn là: \(\frac{{12.C_{11}^2 + C_{12}^3}}{{C_{23}^3}} = \frac{{880}}{{1771}} = \frac{{80}}{{161}}\)
Bài 20 trang 97 SGK Toán 10 – Kết nối tri thức là một phần quan trọng trong chương trình học Toán 10, tập trung vào việc củng cố và vận dụng kiến thức về vectơ trong không gian. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm cơ bản về vectơ, các phép toán vectơ và ứng dụng của chúng trong việc giải quyết các bài toán hình học.
Bài 20 bao gồm các dạng bài tập sau:
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
Lời giải:
Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}. Do đó, overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} +overrightarrow{MC}. Mặt khác, overrightarrow{AC} =overrightarrow{AM} +overrightarrow{MC}, suy ra overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM}. Thay vào phương trình trên, ta được: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AM}. Từ đó, 2overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC}, hay overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).
Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng: overrightarrow{OA} +overrightarrow{OB} +overrightarrow{OC} +overrightarrow{OD} =overrightarrow{0}
Lời giải:
Vì ABCD là hình bình hành, ta có: overrightarrow{OA} = -overrightarrow{OC} và overrightarrow{OB} = -overrightarrow{OD}. Do đó, overrightarrow{OA} +overrightarrow{OB} +overrightarrow{OC} +overrightarrow{OD} =overrightarrow{OA} +overrightarrow{OB} -overrightarrow{OA} -overrightarrow{OB} =overrightarrow{0} (đpcm).
Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh đã có thể tự tin giải quyết bài 20 trang 97 SGK Toán 10 – Kết nối tri thức. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!