Bài 4.28 trang 71 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán lớp 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết vấn đề.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.28 trang 71 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau? A. u = (2;3) và v =(4;6) B. a = (1; - 1) và b = ( - 1;1) C. z = (a;b) và t = ( - b;a) D. n = (1;1) và k = (2;0)
Đề bài
Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?
A. \(\overrightarrow u = (2;3)\) và \(\overrightarrow v = \left( {4;6} \right)\)
B. \(\overrightarrow a = (1; - 1)\) và \(\overrightarrow b = ( - 1;1)\)
C. \(\overrightarrow z = (a;b)\) và \(\overrightarrow t = ( - b;a)\)
D. \(\overrightarrow n = (1;1)\) và \(\overrightarrow k = (2;0)\)
Phương pháp giải - Xem chi tiết
+) Cho \(\overrightarrow u \;(x;y),\;\overrightarrow v \;(z;t)\) thì \(\overrightarrow u .\overrightarrow v = x.z + y.t\)
+) \(\overrightarrow u\; \bot\overrightarrow v\Leftrightarrow \overrightarrow u .\;\overrightarrow v = 0\)
Lời giải chi tiết
A. Ta có: \(\overrightarrow u .\overrightarrow v = 2.4 + 3.6 = 26 \ne 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \) không vuông góc với nhau.
B. Ta có: \(\overrightarrow a .\overrightarrow b = 1.( - 1) + ( - 1).1 = - 2 \ne 0\) nên \(\overrightarrow a \) và \(\overrightarrow b \) không vuông góc với nhau.
C. Ta có: \(\overrightarrow z .\overrightarrow t = a.( - b) + b.a = 0\) nên \(\overrightarrow z \) và \(\overrightarrow t \) vuông góc với nhau.
Chọn đáp án C
D. Ta có: \(\overrightarrow n .\overrightarrow k = 1.2 + 1.0 = 2 \ne 0\) nên \(\overrightarrow n \) và \(\overrightarrow k \) không vuông góc với nhau.
Bài 4.28 trang 71 SGK Toán 10 – Kết nối tri thức là một bài toán ứng dụng thực tế về vectơ trong hình học. Để giải bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 4.28 yêu cầu chúng ta giải quyết một bài toán liên quan đến việc xác định vị trí tương đối của các điểm trong mặt phẳng tọa độ, sử dụng các phép toán vectơ để tìm ra mối quan hệ giữa chúng. Cụ thể, bài toán thường cho trước tọa độ của các điểm và yêu cầu chứng minh một đẳng thức vectơ hoặc tìm một điểm thỏa mãn một điều kiện nào đó.
Để giải bài 4.28 trang 71 SGK Toán 10 – Kết nối tri thức, chúng ta thực hiện các bước sau:
Ví dụ, giả sử bài toán yêu cầu chứng minh rằng bốn điểm A, B, C, D là bốn đỉnh của một hình bình hành. Chúng ta có thể sử dụng vectơ để chứng minh điều này bằng cách chứng minh rằng AB = DC và AD = BC.
Có một số phương pháp giải bài toán vectơ thường được sử dụng:
Để rèn luyện kỹ năng giải bài toán vectơ, các em có thể tham khảo các bài tập tương tự sau:
Khi giải bài toán vectơ, các em cần lưu ý những điều sau:
Bài 4.28 trang 71 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em sẽ giải quyết bài toán này một cách dễ dàng và hiệu quả.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng, được xác định bởi điểm đầu và điểm cuối. |
Tích vô hướng | Một phép toán giữa hai vectơ, cho ra một số thực. |
Hình bình hành | Một tứ giác có hai cặp cạnh đối song song. |