Chào mừng các em học sinh đến với lời giải chi tiết bài 3.7 trang 42 SGK Toán 10 tập 1 – Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, nhanh chóng và đầy đủ.
Giải tam giác ABC và tính diện tích của tam giác đó, biết A = 15, B = 130; c = 6.
Đề bài
Giải tam giác ABC và tính diện tích của tam giác đó, biết \(\widehat A = {15^o},\;\widehat B = {130^o},\;c = 6\).
Phương pháp giải - Xem chi tiết
Tính a, b, \(\widehat C\) và S
Bước 1: Tính \(\widehat C\) rồi suy ra a, b bằng định lí sin: \(\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\)
Bước 2: Tính \(S = \frac{1}{2}bc.\sin A\).
Lời giải chi tiết
Ta có: \(\widehat A = {15^o},\;\widehat B = {130^o} \Rightarrow \widehat C = {35^o}\)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\)
\( \Rightarrow b = \dfrac{{c.\sin B}}{{\sin C}};\;\;a = \dfrac{{c.\sin A}}{{\sin C}}\)
Mà \(\widehat A = {15^o},\;\widehat B = {130^o},\;\widehat C = {35^o},c = 6\)
\( \Rightarrow b = \dfrac{{6.\sin {{130}^o}}}{{\sin {{35}^o}}} \approx 8;\;\;a = \dfrac{{6.\sin {{15}^o}}}{{\sin {{35}^o}}} \approx 2,7\)
Diện tích tam giác ABC là \(S = \dfrac{1}{2}bc.\sin A = \dfrac{1}{2}.8.6.\sin {15^o} \approx 6,212.\)
Vậy \(a \approx 2,7;\;\,b \approx 8\); \(\widehat C = {35^o}\); \(S \approx 6,212.\)
Bài 3.7 trang 42 SGK Toán 10 tập 1 – Kết nối tri thức thuộc chương 1: Mệnh đề và tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về tập hợp, các phép toán trên tập hợp (hợp, giao, hiệu, phần bù) để giải quyết các bài toán cụ thể. Việc hiểu rõ các khái niệm và tính chất của tập hợp là nền tảng quan trọng để giải quyết bài tập này một cách hiệu quả.
Bài tập 3.7 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng câu hỏi cụ thể:
Đề bài: Cho A = {1; 2; 3; 4; 5} và B = {3; 4; 5; 6; 7}. Tìm A ∪ B.
Lời giải:
A ∪ B là tập hợp chứa tất cả các phần tử thuộc A hoặc B (hoặc cả hai).
Do đó, A ∪ B = {1; 2; 3; 4; 5; 6; 7}.
Đề bài: Cho A = {1; 2; 3; 4; 5} và B = {3; 4; 5; 6; 7}. Tìm A ∩ B.
Lời giải:
A ∩ B là tập hợp chứa tất cả các phần tử thuộc cả A và B.
Do đó, A ∩ B = {3; 4; 5}.
Đề bài: Cho A = {1; 2; 3; 4; 5} và B = {3; 4; 5; 6; 7}. Tìm A \ B.
Lời giải:
A \ B là tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.
Do đó, A \ B = {1; 2}.
Đề bài: Cho A = {1; 2; 3; 4; 5} và B = {3; 4; 5; 6; 7}. Tìm B \ A.
Lời giải:
B \ A là tập hợp chứa tất cả các phần tử thuộc B nhưng không thuộc A.
Do đó, B \ A = {6; 7}.
Để củng cố kiến thức về tập hợp và các phép toán trên tập hợp, các em có thể tự giải các bài tập tương tự sau:
Bài 3.7 trang 42 SGK Toán 10 tập 1 – Kết nối tri thức là một bài tập cơ bản nhưng quan trọng trong chương trình học Toán 10. Việc nắm vững kiến thức về tập hợp và các phép toán trên tập hợp sẽ giúp các em giải quyết các bài tập phức tạp hơn trong tương lai. Hy vọng bài viết này đã cung cấp cho các em những kiến thức hữu ích và giúp các em tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn sẽ tiếp tục cập nhật và cung cấp các bài giải chi tiết, dễ hiểu cho các bài tập Toán 10 khác. Hãy theo dõi chúng tôi để không bỏ lỡ bất kỳ thông tin hữu ích nào!