Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 4.22 trang 70 SGK Toán 10 – Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Tìm điều kiện của u.v để: a) u.v = |u|.|v| b) u.v = -|u|.|v|
Đề bài
Tìm điều kiện của \(\overrightarrow u ,\;\overrightarrow v \) để:
a) \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\)
b) \(\overrightarrow u .\;\overrightarrow v = - \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\)
Phương pháp giải - Xem chi tiết
Tích vô hướng \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right)\)
Lời giải chi tiết
a)
Ta có: \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\).
Khi đó \( \cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = 1\) suy ra \( \left( {\overrightarrow u ,\;\overrightarrow v } \right) = {0^o}\).
Nói cách khác: \(\overrightarrow u ,\;\overrightarrow v \) cùng hướng.
b)
Ta có: \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) =- \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\).
Khi đó \( \cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = - 1 \) suy ra \( \left( {\overrightarrow u ,\;\overrightarrow v } \right) = {180^o}\).
Nói cách khác: \(\overrightarrow u ,\;\overrightarrow v \) ngược hướng.
Bài 4.22 trang 70 SGK Toán 10 – Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng của vectơ trong hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm cơ bản và kỹ năng giải toán liên quan đến vectơ.
Bài 4.22 thường bao gồm các dạng bài tập sau:
Để giải bài tập 4.22 trang 70 SGK Toán 10 – Kết nối tri thức một cách hiệu quả, bạn cần:
Bài toán: Cho tam giác ABC với A(1;2), B(3;4), C(-1;0). Tính độ dài cạnh BC.
Giải:
Ta có vectơ BC = (xC - xB; yC - yB) = (-1 - 3; 0 - 4) = (-4; -4).
Độ dài cạnh BC được tính bằng công thức: |BC| = √((-4)^2 + (-4)^2) = √(16 + 16) = √32 = 4√2.
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể luyện tập thêm các bài tập sau:
Học Toán 10 đòi hỏi sự kiên trì và luyện tập thường xuyên. Hãy dành thời gian ôn tập lý thuyết, làm bài tập và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn. Chúc bạn học tốt!
Công thức | Mô tả |
---|---|
AB = B - A | Vectơ AB bằng hiệu tọa độ của điểm B và điểm A |
a + b = (ax + bx; ay + by) | Phép cộng hai vectơ |
k.a = (kax; kay) | Phép nhân một vectơ với một số thực |
|a| = √(ax^2 + ay^2) | Độ dài của vectơ a |