Logo Header
  1. Môn Toán
  2. Giải bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức

Giải bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức

Giải bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức

Bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán liên quan đến hình học phẳng.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và kỹ năng giải bài tập.

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A (-4; 1), B (2;4), C (2; -2) a) Giải tam giác b) Tìm tọa độ trực tâm H của tam giác ABC.

Đề bài

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A (-4; 1), B (2;4), C (2; -2)

a) Giải tam giác

b) Tìm tọa độ trực tâm H của tam giác ABC.

Phương pháp giải - Xem chi tiếtGiải bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức 1

a) Độ dài vectơ \(\overrightarrow {AB} (x;y)\) là \(\left| {\overrightarrow {AB} } \right| = \sqrt {{x^2} + {y^2}} \)

b) Chỉ ra \(\overrightarrow {AH} .\overrightarrow {BC} = \overrightarrow 0 \) và \(\overrightarrow {BH} .\overrightarrow {CA} = \overrightarrow 0 \) từ đó tìm tọa độ của H.

Lời giải chi tiết

a) Ta có:

\(\left\{ \begin{array}{l}\overrightarrow {AB} = (2 - ( - 4);4 - 1) = (6;3)\\\overrightarrow {BC} = (2 - 2; - 2 - 4) = (0; - 6)\\\overrightarrow {AC} = (2 - ( - 4); - 2 - 1) = (6; - 3)\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {3^2}} = 3\sqrt 5 \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{0^2} + {{( - 6)}^2}} = 6\\AC = \left| {\overrightarrow {CA} } \right| = \sqrt {{6^2} + {{( - 3)}^2}} = 3\sqrt 5 .\end{array} \right.\)

Áp dụng định lí cosin cho tam giác ABC, ta có:

\(\cos \widehat A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {3\sqrt 5 } \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( 6 \right)}^2}}}{{2.3\sqrt 5 .3\sqrt 5 }} = \frac{3}{5}\)\( \Rightarrow \widehat A \approx 53,{13^o}\)

\(\cos \widehat B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( 6 \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( {3\sqrt 5 } \right)}^2}}}{{2.6.3\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\)\( \Rightarrow \widehat B \approx 63,{435^o}\)

\( \Rightarrow \widehat C \approx 63,{435^o}\)

Vậy tam giác ABC có: \(a = 6;b = 3\sqrt 5 ;c = 3\sqrt 5 \); \(\widehat A \approx 53,{13^o};\widehat B = \widehat C \approx 63,{435^o}.\)

b)

Gọi H có tọa độ (x; y)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} = (x - ( - 4);y - 1) = (x + 4;y - 1)\\\overrightarrow {BH} = (x - 2;y - 4)\end{array} \right.\)

Lại có: H là trực tâm tam giác ABC

\( \Rightarrow AH \bot BC\) và \(BH \bot AC\)

\( \Rightarrow \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = 0\) và \(\left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = 0\)

Do đó \(\overrightarrow {AH} .\overrightarrow {BC} = \overrightarrow 0 \) và \(\overrightarrow {BH} .\overrightarrow {AC} = \overrightarrow 0 \).

Mà: \(\overrightarrow {BC} = (0; - 6)\)

\( \Rightarrow (x + 4).0 + (y - 1).( - 6) = 0 \Leftrightarrow - 6.(y - 1) = 0 \Leftrightarrow y = 1.\)

Và \(\overrightarrow {AC} = (6; - 3)\)

\(\begin{array}{l} \Rightarrow (x - 2).6 + (y - 4).( - 3) = 0\\ \Leftrightarrow 6x - 12 + ( - 3).( - 3) = 0\\ \Leftrightarrow 6x - 3 = 0\\ \Leftrightarrow x = \frac{1}{2}.\end{array}\)

Vậy H có tọa độ \(\left( {\frac{1}{2}}; 1 \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức đặc sắc thuộc chuyên mục học toán 10 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức: Hướng dẫn chi tiết và phương pháp giải

Bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức là một bài toán ứng dụng kiến thức về vectơ trong hình học phẳng. Để giải bài toán này, học sinh cần nắm vững các khái niệm cơ bản về vectơ, các phép toán vectơ và các tính chất của vectơ.

Đề bài bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức

Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo hai vectơ ABAC.

Lời giải bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức

Ta có: AM = AB + BM

Vì M là trung điểm của BC nên BM = MC = 1/2 BC

BC = AC - AB

Do đó, BM = 1/2 (AC - AB)

Thay vào biểu thức AM, ta được:

AM = AB + 1/2 (AC - AB) = AB + 1/2 AC - 1/2 AB = 1/2 AB + 1/2 AC

Vậy AM = 1/2 AB + 1/2 AC

Phương pháp giải bài tập vectơ trong hình học phẳng

  • Nắm vững các khái niệm cơ bản: Vectơ, độ dài vectơ, vectơ đơn vị, vectơ đối, tổng và hiệu của hai vectơ, tích của một số với một vectơ.
  • Hiểu rõ các phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực.
  • Vận dụng các tính chất của vectơ: Tính chất giao hoán, tính chất kết hợp, tính chất phân phối.
  • Sử dụng các công thức liên quan đến vectơ: Công thức trung điểm, công thức trọng tâm, công thức tính diện tích tam giác.
  • Vẽ hình minh họa: Việc vẽ hình minh họa giúp ta hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.

Các bài tập tương tự

Để củng cố kiến thức về vectơ, các em có thể làm thêm các bài tập tương tự sau:

  1. Bài 4.25 trang 70 SGK Toán 10 – Kết nối tri thức
  2. Bài 4.26 trang 71 SGK Toán 10 – Kết nối tri thức
  3. Các bài tập vận dụng trong sách bài tập Toán 10

Kết luận

Bài 4.24 trang 70 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học phẳng. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10