Logo Header
  1. Môn Toán
  2. Giải bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức

Giải bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức

Giải bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức

Bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và kỹ năng giải bài tập.

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ a và b trong mỗi trường hợp sau: a) a = ( - 3;1), b = (2;6) b) a = (3;1), b = (2;4)

Đề bài

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) trong mỗi trường hợp sau:

a) \(\overrightarrow a = ( - 3;1),\;\overrightarrow b = (2;6)\)

b) \(\overrightarrow a = (3;1),\;\overrightarrow b = (2;4)\)

c) \(\overrightarrow a = ( - \sqrt 2 ;1),\;\overrightarrow b = (2; - \sqrt 2 )\)

Phương pháp giải - Xem chi tiếtGiải bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức 1

Tính góc giữa hai vectơ dựa vào tích vô hướng: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)

Lời giải chi tiết

a) 

\(\overrightarrow a .\overrightarrow b = ( - 3).2 + 1.6 = 0\)

\( \Rightarrow \overrightarrow a \bot \overrightarrow b \) hay \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\).

b)

\(\left\{ \begin{array}{l}\overrightarrow a .\overrightarrow b = 3.2 + 1.4 = 10\\|\overrightarrow a |\, = \sqrt {{3^2} + {1^2}} = \sqrt {10} ;\;\,|\overrightarrow b |\, = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \end{array} \right.\)

\(\begin{array}{l} \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{10}}{{\sqrt {10} .2\sqrt 5 }} = \frac{{\sqrt 2 }}{2}\\ \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {45^o}\end{array}\)

c) Dễ thấy: \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương do \(\frac{{ - \sqrt 2 }}{2} = \frac{1}{{ - \sqrt 2 }}\)

Hơn nữa: \(\overrightarrow b = \left( {2; - \sqrt 2 } \right) = - \sqrt 2 .\left( { - \sqrt 2 ;1} \right) = - \sqrt 2 .\overrightarrow a \;\); \( - \sqrt 2 < 0\)

Do đó: \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng.

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\)

Chú ý:

Khi tính góc, ta kiểm tra các trường hợp dưới đây trước:

+ \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\): nếu \(\overrightarrow a .\overrightarrow b = 0\)

+ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương: 

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {0^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng

Nếu không thuộc các trường hợp trên thì ta tính góc dựa vào công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức: Hướng dẫn chi tiết và dễ hiểu

Bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Vectơ: Định nghĩa, các yếu tố của vectơ, sự bằng nhau của hai vectơ.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Ứng dụng của vectơ: Biểu diễn các điểm, đường thẳng, đoạn thẳng bằng vectơ; chứng minh các tính chất hình học bằng vectơ.

Nội dung bài tập 4.21 trang 70 SGK Toán 10 – Kết nối tri thức

Bài 4.21 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ liên quan đến các yếu tố hình học trong bài toán.
  2. Thực hiện các phép toán vectơ để tìm các vectơ cần thiết.
  3. Sử dụng các tính chất của vectơ để chứng minh các mối quan hệ hình học.

Lời giải chi tiết bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài toán yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Ta có thể sử dụng vectơ để chứng minh điều này bằng cách:

  1. Biểu diễn các vectơ ABDC.
  2. Chứng minh rằng AB = DC (về độ dài và hướng).
  3. Tương tự, chứng minh rằng AD = BC.
  4. Nếu cả hai điều kiện trên được thỏa mãn, tứ giác ABCD là hình bình hành.

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh có thể tham khảo một số mẹo sau:

  • Vẽ hình: Vẽ hình minh họa giúp các em hình dung rõ hơn về bài toán và các yếu tố liên quan.
  • Chọn hệ tọa độ: Chọn hệ tọa độ thích hợp có thể giúp đơn giản hóa các phép toán vectơ.
  • Sử dụng các công thức: Nắm vững các công thức về vectơ và áp dụng chúng một cách linh hoạt.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ứng dụng của vectơ trong hình học

Vectơ là một công cụ mạnh mẽ trong hình học, giúp chúng ta giải quyết nhiều bài toán phức tạp một cách dễ dàng. Một số ứng dụng của vectơ trong hình học bao gồm:

  • Chứng minh các tính chất của các hình hình học (hình bình hành, hình chữ nhật, hình thoi, hình vuông, hình thang cân, v.v.).
  • Tính diện tích và chu vi của các hình hình học.
  • Tìm phương trình đường thẳng và đường tròn.
  • Giải các bài toán về khoảng cách và góc.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về vectơ, các em học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 – Kết nối tri thức.
  • Sách bài tập Toán 10 – Kết nối tri thức.
  • Các trang web học toán online uy tín (ví dụ: giaitoan.edu.vn).
  • Các video bài giảng về vectơ trên YouTube.

Kết luận

Bài 4.21 trang 70 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 10