Bài 9.14 trang 88 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán liên quan đến hình học phẳng.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.14 trang 88 SGK Toán 10 – Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và kỹ năng giải bài tập.
Rút ngẫu nhiên ra một thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30. Xác suất để số trên tấm thẻ được rút ra chia hết cho 5 là:
Đề bài
Rút ngẫu nhiên ra một thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30. Xác suất để số trên tấm thẻ được rút ra chia hết cho 5 là:
A. \(\frac{1}{{30}}\)
B. \(\frac{1}{5}\)
C. \(\frac{1}{3}\)
D. \(\frac{2}{5}\)
Phương pháp giải - Xem chi tiết
Các số chia hết cho 5 là các số có chữ số tận cùng là 0 hoặc 5.
Lời giải chi tiết
Số phần tử của không gian mẫu là\(n\left( \Omega \right) = 30\).
Gọi E là biến cố: “Số trên thẻ được rút ra là số chia hết cho 5”
Ta có \(E = \left\{ {5;10;15;20;25;30} \right\} \Rightarrow n\left( E \right) = 6\)
Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{1}{5}\).
Chọn B
Bài 9.14 trang 88 SGK Toán 10 – Kết nối tri thức là một bài toán điển hình về ứng dụng của vectơ trong hình học. Để giải bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. G là trọng tâm của tam giác ABC. Chứng minh rằng: GA = 2GM
Để chứng minh GA = 2GM, ta sẽ sử dụng các tính chất của trọng tâm và vectơ.
Vậy, ta đã chứng minh được GA = 2GM.
Để giải các bài toán vectơ trong hình học một cách hiệu quả, học sinh cần:
Để củng cố kiến thức về vectơ và ứng dụng trong hình học, các em học sinh có thể tham khảo các bài tập tương tự sau:
Bài 9.14 trang 88 SGK Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục môn Toán. Chúc các em học tập tốt!